Orbital magnetization

In quantum mechanics, orbital magnetization, Morb, refers to the magnetization induced by orbital motion of charged particles, usually electrons in solids. The term "orbital" distinguishes it from the contribution of spin degrees of freedom, Mspin, to the total magnetization. A nonzero orbital magnetization requires broken time-reversal symmetry, which can occur spontaneously in ferromagnetic and ferrimagnetic materials, or can be induced in a non-magnetic material by an applied magnetic field.

Definitions

The orbital magnetic moment of a finite system, such as a molecule, is given classically by[1]

where J(r) is the current density at point r. (Here SI units are used; in Gaussian units, the prefactor would be 1/2c instead, where c is the speed of light.) In a quantum-mechanical context, this can also be written as

where −e and me are the charge and mass of the electron, Ψ is the ground-state wave function, and L is the angular momentum operator. The total magnetic moment is

where the spin contribution is intrinsically quantum-mechanical and is given by

where gs is the electron spin g-factor, μB is the Bohr magneton, ħ is the reduced Planck constant, and S is the electron spin operator.

The orbital magnetization M is defined as the orbital moment density; i.e., orbital moment per unit volume. For a crystal of volume V composed of isolated entities (e.g., molecules) labelled by an index j having magnetic moments morb, j, this is

However, real crystals are made up out of atomic or molecular constituents whose charge clouds overlap, so that the above formula cannot be taken as a fundamental definition of orbital magnetization.[2] Only recently have theoretical developments led to a proper theory of orbital magnetization in crystals, as explained below.

Theory

Difficulties in the definition of orbital magnetization

For a magnetic crystal, it is tempting to try to define

where the limit is taken as the volume V of the system becomes large. However, because of the factor of r in the integrand, the integral has contributions from surface currents that cannot be neglected, and as a result the above equation does not lead to a bulk definition of orbital magnetization.[2]

Another way to see that there is a difficulty is to try to write down the quantum-mechanical expression for the orbital magnetization in terms of the occupied single-particle Bloch functions |ψn k of band n and crystal momentum k:

where p is the momentum operator, L = r × p, and the integral is evaluated over the Brillouin zone (BZ). However, because the Bloch functions are extended, the matrix element of a quantity containing the r operator is ill-defined, and this formula is actually ill-defined.[3]

Atomic sphere approximation

In practice, orbital magnetization is often computed by decomposing space into non-overlapping spheres centered on atoms (similar in spirit to the muffin-tin approximation), computing the integral of r × J(r) inside each sphere, and summing the contributions.[4] This approximation neglects the contributions from currents in the interstitial regions between the atomic spheres. Nevertheless, it is often a good approximation because the orbital currents associated with partially filled d and f shells are typically strongly localized inside these atomic spheres. It remains, however, an approximate approach.

Modern theory of orbital magnetization

A general and exact formulation of the theory of orbital magnetization was developed in the mid-2000s by several authors, first based on a semiclassical approach,[5] then on a derivation from the Wannier representation,[6][7] and finally from a long-wavelength expansion.[8] The resulting formula for the orbital magnetization, specialized to zero temperature, is

where fn k is 0 or 1 respectively as the band energy En k falls above or below the Fermi energy μ,

is the effective Hamiltonian at wavevector k, and

is the cell-periodic Bloch function satisfying

A generalization to finite temperature is also available.[3][8] Note that the term involving the band energy En k in this formula is really just an integral of the band energy times the Berry curvature. Results computed using the above formula have appeared in the literature.[9] A recent review summarizes these developments.[10]

Experiments

The orbital magnetization of a material can be determined accurately by measuring the gyromagnetic ratio γ, i.e., the ratio between the magnetic dipole moment of a body and its angular momentum. The gyromagnetic ratio is related to the spin and orbital magnetization according to

The two main experimental techniques are based either on the Barnett effect or the Einstein–de Haas effect. Experimental data for Fe, Co, Ni, and their alloys have been compiled.[11]

References

  1. ^ Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 7-04-014432-8.
  2. ^ a b Hirst, L. L. (1997), "The microscopic magnetization: concept and application", Reviews of Modern Physics, vol. 69, no. 2, pp. 607–628, Bibcode:1997RvMP...69..607H, doi:10.1103/RevModPhys.69.607
  3. ^ a b Resta, Raffaele (2010), "Electrical polarization and orbital magnetization: the modern theories", Journal of Physics: Condensed Matter, vol. 22, no. 12, p. 123201, Bibcode:2010JPCM...22l3201R, doi:10.1088/0953-8984/22/12/123201, PMID 21389484, S2CID 18645988
  4. ^ Todorova, M.; Sandratskii, M.; Kubler, J. (January 2001), "Current-determined orbital magnetization in a metallic magnet", Physical Review B, 63 (5), American Physical Society: 052408, Bibcode:2001PhRvB..63e2408T, doi:10.1103/PhysRevB.63.052408
  5. ^ Xiao, Di; Shi, Junren; Niu, Qian (September 2005), "Berry Phase Correction to Electron Density of States in Solids", Phys. Rev. Lett., 95 (13): 137204, arXiv:cond-mat/0502340, Bibcode:2005PhRvL..95m7204X, doi:10.1103/PhysRevLett.95.137204, PMID 16197171, S2CID 119017032
  6. ^ Thonhauser, T.; Ceresoli, D.; Vanderbilt, D.; Resta, R. (2005). "Orbital magnetization in periodic insulators". Phys. Rev. Lett. 95 (13): 137205. arXiv:cond-mat/0505518. Bibcode:2005PhRvL..95m7205T. doi:10.1103/PhysRevLett.95.137205. PMID 16197172. S2CID 11961765.
  7. ^ Ceresoli, D.; Thonhauser, T.; Vanderbilt, D.; Resta, R. (2006). "Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals". Phys. Rev. B. 74 (2): 024408. arXiv:cond-mat/0512142. Bibcode:2006PhRvB..74b4408C. doi:10.1103/PhysRevB.74.024408. S2CID 958110.
  8. ^ a b Shi, Junren; Vignale, G.; Niu, Qian (November 2007), "Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems", Phys. Rev. Lett., 99 (19), American Physical Society: 197202, arXiv:0704.3824, Bibcode:2007PhRvL..99s7202S, doi:10.1103/PhysRevLett.99.197202, PMID 18233109, S2CID 7942622
  9. ^ Ceresoli, D.; Gerstmann, U.; Seitsonen, A.P.; Mauri, F. (Feb 2010). "First-principles theory of orbital magnetization". Phys. Rev. B. 81 (6): 060409 of 4 pages. arXiv:0904.1988. Bibcode:2010PhRvB..81f0409C. doi:10.1103/PhysRevB.81.060409. S2CID 118625623.
  10. ^ Thonhauser, T. (May 2011). "Theory of Orbital Magnetization in Solids". Int. J. Mod. Phys. B. 25 (11): 1429–1458. arXiv:1105.5251. Bibcode:2011IJMPB..25.1429T. doi:10.1142/S0217979211058912. S2CID 119292686.
  11. ^ Meyer, A.J.P.; Asch, G. (1961). "Experimental g' and g values for Fe, Co, Ni, and their alloys". J. Appl. Phys. 32 (3): S330. Bibcode:1961JAP....32S.330M. doi:10.1063/1.2000457.

Read other articles:

Bagian dari seri tentangMarxisme Teori kerja Manifesto Komunis Sebuah Kontribusi untuk Kritik Politik Ekonomi Das Kapital Brumaire ke-28 Louis Napoleon Grundrisse Ideologi Jerman Ekonomi dan Filsafat Naskah 1844 Tesis Feuerbach Konsep Materialisme dialektik Penentuan ekonomi Materialisme historis Metode Marx Sosialisme Marxian Overdetermination Sosialisme ilimiah Determinisme teknologi ProletariatBourgeoisie Ekonomi Modal ( akumulasi) Cara produksi kapitalis Teori krisis Komoditi Eksploitasi ...

 

Bintang PanturaMusim 4Penayangan10 Juli – 27 Agustus 2017JuriIyeth BustamiZaskia GotikNassarInul DaratistaPembawa acaraRamziIrfan HakimGilang DirgaNikita Mirzani[1]Okky LukmanSaluranIndosiarLokasi finalStudio 5 IndosiarStudio 6 Emtek CityPemenangFitri TamaraAsalBanyuwangiGenreDangdutJuara duaQiki RizkiKronologi◀ 2017 ► Bintang Pantura (Musim 4) adalah sebuah ajang pencarian bakat penyanyi dangdut pantura musim keempat dari Bintang Pantura yang ditayangkan di Indosiar. Acara ini ...

 

Fred Hoyle Statue de Fred Hoyle, Institute of Astronomy Données clés Naissance 24 juin 1915Gilstead, Bingley, Yorkshire Décès 20 août 2001 (à 86 ans)Bournemouth Nationalité anglais Données clés Domaines Astronomie, écrivain SF Institutions Université de Cambridge Renommé pour Big Bang Théorie de l'état stationnaireHoyle's fallacy type de Théorie synthétique de l'évolution Réaction triple alpha Panspermie Distinctions Récompenses Site www.hoyle.org.uk Compléments Geof...

Gambar Badai Isabel yang terlihat dari Stasiun Luar Angkasa Internasional menunjukkan mata yang jelas di pusat badai. Mata adalah daerah yang sebagian besar cuacanya tenang di pusat siklon tropis yang kuat. Mata badai adalah area yang kira-kira bundar, biasanya berdiameter 30–65 kilometer (19–40 mi). Dikelilingi oleh dinding mata, sebuah cincin badai petir yang menjulang tinggi di mana cuaca paling parah dan angin kencang terjadi. Tekanan barometrik terendah topan terjadi di mata dan...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Dalam nama Korean ini, nama keluarganya adalah Kim. Kim Geu-rimKim Greem pada tahun 2012Lahir1 Maret 1987 (umur 37)PendidikanKorea University Sejong Campus, Jurusan Bahasa dan Sastra InggrisPekerjaanPenyanyiTahun aktif2011–sekarangAgenN...

 

Central or downtown area of a Philippine city or municipality For individual places called Poblacion, see Poblacion (disambiguation). Plaza Rizal in Biñan's poblacion Politics of the Philippines Government Constitution of the Philippines Charter Change Laws Legal codes Taxation Executive President of the Philippines Bongbong Marcos (PFP) Vice President of the Philippines Sara Duterte (HNP) Cabinet (lists) Executive departments Local government Legislature Congress of the Philippines 19th Con...

Administrative division of Taiwan   Special municipalities  Cities   County-administered cities This article is part of a series onAdministrative divisionsof Taiwan Centrally-governed Special municipalities Counties Cities Township-level Districts Mountain indigenous districts County-administered cities Urban townships Rural townships Mountain indigenous townships Village-level Urban villages Rural villages Neighborhood-level Neighborhoods Historical divisions of...

 

Georgina Beyer was the first openly transgender mayor and Member of Parliament in the world This is a list of LGBTQIA+ (lesbian, gay, bisexual, transgender and intersex) holders of political offices in New Zealand. Charles Mackay, who served as Mayor of Whanganui for a non-consecutive period from 1906 to 1920, is the first known gay mayor. Mackay resigned from his position in 1920 after the attempted murder of poet D'Arcy Cresswell, who allegedly blackmailed him and threatened to publicly ex...

 

Sirkuit 1 Sirkuit 2 Sirkuit integrator pasif adalah jaringan empat-saluran sederhana yang terdiri dari dua unsur pasif. Ini juga tapis lulus-bawah paling sederhana. Fungsi transfer Rasio transfer adalah faktor penguatan untuk isyarat masukan sinusoida pada frekuensi tertentu. Fungsi transfer menunjukkan kemandirian rasio transfer dari frekuensi isyarat pada isyarat sinusoida. Berdasarkan hukum Ohm, Y = X Z C Z C + Z R = X 1 j ω C 1 j ω C + R = X 1 1 + j ω R C {\displaysty...

Artikel ini bukan mengenai Mesias. Messiah (HWV 56) adalah judul oratorio karya George Frideric Handel yang digubah pada tahun 1741.[1] Judul oratorio atau karya musik untuk orkestra, solo, dan paduan suara ini diambil dari konsep Yudaisme dan Kristen tentang Mesias. Dalam Kekristenan, Yesus disebut sebagai Sang Mesias. Handel sendiri beragama Kristen, dan oratorio tersebut didasarkan pada kisah Alkitab mengenai karya Yesus di dunia sebagai Sang Mesias atau Juru Selamat menurut konsep...

 

Amarasi adalah sebuah kerajaan tradisional di Timor Barat, saat ini menjadi wilayah Indonesia. Kerajaan ini memiliki peran penting dalam sejarah politik Timor selama abad ke-17 dan 18, menjadi negara klien dari kolonial Portugal, dan kemudian menjadi bagian dari Hindia Belanda. Sejarah Asal usul Amarasi diceritakan dalam berbagai legenda. Versi tertua mengatakan bahwa garis dinasti kerajaan ini berasal dari Wehali. Salah satu anggota keluarga, Nafi Rasi, secara tidak sengaja memecahkan mangku...

 

Extinct genus of crustaceans † Tesnusocaris goldichiTemporal range: Lower Pennsylvanian PreꞒ Ꞓ O S D C P T J K Pg N Tesnusocaris goldichi Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Remipedia Order: †Enantiopoda Family: †Tesnusocarididae Genus: †TesnusocarisBrooks, 1955 Species: †T. goldichi Binomial name †Tesnusocaris goldichiBrooks, 1955 [1] Tesnusocaris goldichi is an extinct species of remipedian[2&#...

Overview of the events of 1858 in art This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1858 in art – news · newspapers · books · scholar · JSTOR (March 2014) (Learn how and when to remove this message) Overview of the events of 1858 in art List of years in art (table) … 1848 1849 1850 1851 1852 1853 1854 18...

 

American comedian and actor (1940–2005) This article is about the stand-up comedian. For the broadcaster and humorist, see Cactus Pryor. For the album, see Richard Pryor (album). Richard PryorPryor in 1976Birth nameRichard Franklin Lennox Thomas PryorBorn(1940-12-01)December 1, 1940Peoria, Illinois, U.S.DiedDecember 10, 2005(2005-12-10) (aged 65)Los Angeles, California, U.S.MediumStand-upfilmtelevisionYears active1963–1999GenresObservational comedyblack comedyimprovisational com...

 

Pour les articles homonymes, voir DBD. un appareil DBD montrant le générateur de courant alternatif haute tension, l'enceinte en verre, la connexion HT, la connexion à la terre, la couche diélectrique et la décharge par gaz La décharge à barrière diélectrique (aussi connue sous le nom de décharge contrôlée par barrière diélectrique, DBD, ou décharge silencieuse) est une décharge électrique créée entre deux électrodes séparées par un matériau diélectrique. De manière ...

American public television syndicator Not to be confused with Alabama Public Television. American Public TelevisionFormerlyEastern Educational Network (1960–1980)Interregional Program Service (1980–1992)American Program Service (1992–2000)Company typeNon-profitIndustryPublic televisionTelevision syndicationFoundedFebruary 9, 1960; 64 years ago (1960-02-09)HeadquartersBoston, Massachusetts, U.S.Area servedWorldwideWebsiteaptonline.org American Public Television (APT) is...

 

Football league seasonBrunei Super LeagueMatch between Kasuka and ABDBSeason2023ChampionsKasuka FC (1st title)Matches played126Goals scored503 (3.99 per match)Top goalscorer Leon Taylor (31 goals)Biggest home winKasuka 8–1 JerudongAKSE Bersatu 8–1 JerudongBiggest away winLun Bawang 0–11 Kasuka← 2021 2024–25 → The 2023 Brunei Super League was the ninth season of the Brunei Super League, the top football league in Brunei since its establishment in 2012. The league began in Marc...

 

An editor has performed a search and found that sufficient sources exist to establish the subject's notability. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Fox of Paris – news · newspapers · books · scholar · JSTOR (November 2021) (Learn how and when to remove this message) 1957 French filmThe Fox of ParisDirected byPaul MayWritten byHerbert B. Fredersdorf ...

Free and open-source web browser by Mozilla This article is about the web browser. For other uses, see Firefox (disambiguation). Phoenix (web browser) redirects here. For the early-1990s web browser developed at the University of Chicago, see Phoenix (tkWWW-based browser). FirefoxLogo used since October 2019Developer(s)Mozilla Foundation and its contributorsMozilla CorporationInitial releaseNovember 9, 2004; 19 years ago (2004-11-09)Stable release(s) [±]Standard128....

 

Better (album mini) beralih ke halaman ini. Untuk album karya Haley Reinhart, lihat Better (album Haley Reinhart). BetterSingel oleh Twicedari album Perfect WorldBahasaJepangSisi-BScorpionDirilis18 November 2020Durasi3:44LabelWarner Music JapanKomponis musik Eunsol Lauren Kaori Lirikus Lauren Kaori Mio Jorakuji Kronologi singel Twice I Can't Stop Me (2020) Better (2020) Cry for Me (2020) Kronologi singel Jepang Twice Fanfare(2020) Better(2020) Kura Kura(2021) Video musikBetter di Yo...