The omega loop[1][2] is a non-regular proteinstructural motif, consisting of a loop of six or more amino acid residues and any amino acid sequence. The defining characteristic is that residues that make up the beginning and end of the loop are close together in space with no intervening lengths of regular secondary structural motifs. It is named after its shape, which resembles the upper-case Greek letter Omega (Ω).
Structure
Omega loops, being non-regular, non-repeating secondary structural units, have a variety of three-dimensional shapes. Omega loop shapes are analyzed to identify recurring patterns in dihedral angles and overall loop shape to help identify potential roles in protein folding and function.[3][4]
Since loops are almost always at the protein surface, it is often assumed that these structures are flexible; however, different omega loops exhibit ranges of flexibility across different time scales of protein motion and have been identified as playing a role in the folding of some proteins, including HIV-1reverse transcriptase;[5][6]cytochrome c;[7][8] and nucleases.[9][10]
Likewise, omega loops play an interesting role in the function of the beta-lactamases: mutations in the "omega loop region" of a beta-lactamase can change its specific function and substrate profile,[15][16][17] perhaps due to an important functional role of the correlated dynamics of the region.[18]
Cytochrome c
Omega loops have long been recognized also for their importance in the function and folding of the protein cytochrome c, contributing both key functional residues and well as important dynamic properties.[19][20][21] Many researchers have studied omega loop function and dynamics in specific protein systems using a so-called "loop swap" approach, in which loops are swapped between (usually) homologous proteins.[22][23][24]
^Mager, PP (Dec 1996). "Molecular simulation of the folding patterns of the omega-loop (Tyr181 to Tyr188) of HIV-1 reverse transcriptase". Drug des Discov. 14 (3): 213–23. PMID9017364.
^Mager, PP; Walther, H (Dec 1996). "A hydrophilic omega-loop (Tyr181 to Tyr188) in the nonsubstrate binding area of HIV-1 reverse transcriptase". Drug des Discov. 14 (3): 225–39. PMID9017365.
^Caroppi, P; Sinibaldi, F; Santoni, E; Howes, BD; Fiorucci, L; Ferri, T; Ascoli, F; Smulevich, G; Santucci, R (Dec 2004). "The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c". J Biol Inorg Chem. 9 (8): 997–1006. doi:10.1007/s00775-004-0601-9. hdl:2108/34631. PMID15503233. S2CID2130725.
^Vu, ND; Feng, H; Bai, Y (30 Mar 2004). "The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions". Biochemistry. 43 (12): 3346–56. doi:10.1021/bi0362267. PMID15035606.
^Wang, X; Wang, M; Tong, Y; Shan, L; Wang, J (Oct 2006). "Probing the folding capacity and residual structures in 1-79 residues fragment of staphylococcal nuclease by biophysical and NMR methods". Biochimie. 88 (10): 1343–55. doi:10.1016/j.biochi.2006.05.002. PMID17045725.
^Xiang, J; Jung, JY; Sampson, NS (14 Sep 2004). "Entropy effects on protein hinges: the reaction catalyzed by triosephosphate isomerase". Biochemistry. 43 (36): 11436–45. doi:10.1021/bi049208d. PMID15350130.
^Neuhaus, FC (Sep 2011). "Role of the omega loop in specificity determination in subsite 2 of the D-alanine:D-alanine (D-lactate) ligase from Leuconostoc mesenteroides: a molecular docking study". J Mol Graph Model. 30: 31–7. doi:10.1016/j.jmgm.2011.06.002. PMID21727015.
^Sampson, NS; Kass, IJ; Ghoshroy, KB (21 Apr 1998). "Assessment of the role of an omega loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity". Biochemistry. 37 (16): 5770–8. doi:10.1021/bi973067g. PMID9548964.
^Preston, RJ; Morse, C; Murden, SL; Brady, SK; O'Donnell, JS; Mumford, AD (Mar 2009). "The protein C omega-loop substitution Asn2Ile is associated with reduced protein C anticoagulant activity". Br J Haematol. 144 (6): 946–53. doi:10.1111/j.1365-2141.2008.07550.x. PMID19133979. S2CID1618500.