Odds algorithm

In decision theory, the odds algorithm (or Bruss algorithm) is a mathematical method for computing optimal strategies for a class of problems that belong to the domain of optimal stopping problems. Their solution follows from the odds strategy, and the importance of the odds strategy lies in its optimality, as explained below.

The odds algorithm applies to a class of problems called last-success problems. Formally, the objective in these problems is to maximize the probability of identifying in a sequence of sequentially observed independent events the last event satisfying a specific criterion (a "specific event"). This identification must be done at the time of observation. No revisiting of preceding observations is permitted. Usually, a specific event is defined by the decision maker as an event that is of true interest in the view of "stopping" to take a well-defined action. Such problems are encountered in several situations.

Examples

Two different situations exemplify the interest in maximizing the probability to stop on a last specific event.

  1. Suppose a car is advertised for sale to the highest bidder (best "offer"). Let potential buyers respond and ask to see the car. Each insists upon an immediate decision from the seller to accept the bid, or not. Define a bid as interesting, and coded 1 if it is better than all preceding bids, and coded 0 otherwise. The bids will form a random sequence of 0s and 1s. Only 1s interest the seller, who may fear that each successive 1 might be the last. It follows from the definition that the very last 1 is the highest bid. Maximizing the probability of selling on the last 1 therefore means maximizing the probability of selling best.
  2. A physician, using a special treatment, may use the code 1 for a successful treatment, 0 otherwise. The physician treats a sequence of patients the same way, and wants to minimize any suffering, and to treat every responsive patient in the sequence. Stopping on the last 1 in such a random sequence of 0s and 1s would achieve this objective. Since the physician is no prophet, the objective is to maximize the probability of stopping on the last 1. (See Compassionate use.)

Definitions

Consider a sequence of independent events. Associate with this sequence another sequence of independent events with values 1 or 0. Here , called a success, stands for the event that the kth observation is interesting (as defined by the decision maker), and for non-interesting. These random variables are observed sequentially and the goal is to correctly select the last success when it is observed.

Let be the probability that the kth event is interesting. Further let and . Note that represents the odds of the kth event turning out to be interesting, explaining the name of the odds algorithm.

Algorithmic procedure

The odds algorithm sums up the odds in reverse order

until this sum reaches or exceeds the value 1 for the first time. If this happens at index s, it saves s and the corresponding sum

If the sum of the odds does not reach 1, it sets s = 1. At the same time it computes

The output is

  1. , the stopping threshold
  2. , the win probability.

Odds strategy

The odds strategy is the rule to observe the events one after the other and to stop on the first interesting event from index s onwards (if any), where s is the stopping threshold of output a.

The importance of the odds strategy, and hence of the odds algorithm, lies in the following odds theorem.

Odds theorem

The odds theorem states that

  1. The odds strategy is optimal, that is, it maximizes the probability of stopping on the last 1.
  2. The win probability of the odds strategy equals
  3. If , the win probability is always at least 1/e = 0.367879..., and this lower bound is best possible.

Features

The odds algorithm computes the optimal strategy and the optimal win probability at the same time. Also, the number of operations of the odds algorithm is (sub)linear in n. Hence no quicker algorithm can possibly exist for all sequences, so that the odds algorithm is, at the same time, optimal as an algorithm.

Sources

Bruss 2000 devised the odds algorithm, and coined its name. It is also known as Bruss algorithm (strategy). Free implementations can be found on the web.

Applications

Applications reach from medical questions in clinical trials over sales problems, secretary problems, portfolio selection, (one way) search strategies, trajectory problems and the parking problem to problems in online maintenance and others.

There exists, in the same spirit, an Odds Theorem for continuous-time arrival processes with independent increments such as the Poisson process (Bruss 2000). In some cases, the odds are not necessarily known in advance (as in Example 2 above) so that the application of the odds algorithm is not directly possible. In this case each step can use sequential estimates of the odds. This is meaningful, if the number of unknown parameters is not large compared with the number n of observations. The question of optimality is then more complicated, however, and requires additional studies. Generalizations of the odds algorithm allow for different rewards for failing to stop and wrong stops as well as replacing independence assumptions by weaker ones (Ferguson 2008).

Variations

Bruss & Paindaveine 2000 discussed a problem of selecting the last successes.

Tamaki 2010 proved a multiplicative odds theorem which deals with a problem of stopping at any of the last successes. A tight lower bound of win probability is obtained by Matsui & Ano 2014.

Matsui & Ano 2017 discussed a problem of selecting out of the last successes and obtained a tight lower bound of win probability. When the problem is equivalent to Bruss' odds problem. If the problem is equivalent to that in Bruss & Paindaveine 2000. A problem discussed by Tamaki 2010 is obtained by setting

Multiple choice problem

A player is allowed choices, and he wins if any choice is the last success. For classical secretary problem, Gilbert & Mosteller 1966 discussed the cases . The odds problem with is discussed by Ano, Kakinuma & Miyoshi 2010. For further cases of odds problem, see Matsui & Ano 2016.

An optimal strategy for this problem belongs to the class of strategies defined by a set of threshold numbers , where .

Specifically, imagine that you have letters of acceptance labelled from to . You would have application officers, each holding one letter. You keep interviewing the candidates and rank them on a chart that every application officer can see. Now officer would send their letter of acceptance to the first candidate that is better than all candidates to . (Unsent letters of acceptance are by default given to the last applicants, the same as in the standard secretary problem.)

When , Ano, Kakinuma & Miyoshi 2010 showed that the tight lower bound of win probability is equal to For general positive integer , Matsui & Ano 2016 proved that the tight lower bound of win probability is the win probability of the secretary problem variant where one must pick the top-k candidates using just k attempts.

When , tight lower bounds of win probabilities are equal to , and respectively.

For further numerical cases for , and an algorithm for general cases, see Matsui & Ano 2016.

See also

References

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Paul HüttelLahir13 Juli 1935 (umur 88)Hedensted, DenmarkPekerjaanPemeranTahun aktif1960-kini Paul Hüttel (lahir 13 Juli 1935) adalah seorang pemeran asal Denmark. Ia tampil dalam lebih dari 50 film dan acara televisi sejak 1960. Ia membinta...

 

Yearly conference held for climate change treaty negotiations 2023 United Nations Climate Change ConferenceLogoA group photo of national leaders and other dignitaries at the 2023 United Nations Climate Change ConferenceNative name مؤتمر الأمم المتحدة للتغير المناخي 2023Date30 November – 13 December 2023 (2023-11-30 – 2023-12-13)LocationExpo City, Dubai, United Arab EmiratesOrganised byUnited Arab EmiratesParticipantsUNFCCC m...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الخبر الأسبوعيمعلومات عامةالنوع أسبوعيةبلد المنشأ  الجزائر الثمن 10 دجشخصيات هامةرئيس التحرير كمال ز�...

Sukhoi Su-24Su-24 Soviet dengan roda diturunkan.TipePesawat serang daratProdusenSukhoiTerbang perdanaDesember 1971Diperkenalkan1974StatusAktifPengguna utamaRusiaPengguna lainIranSiriaJumlah produksi1200+ Sukhoi Su-24 pada MAKS Airshow 2005. Sukhoi Su-24 (kode NATO: 'Fencer') adalah sebuah pesawat penyerang segala cuaca supersonik Uni Soviet yang paling maju pada tahun 1970-1980an. Pesawat ini diawaki dua orang, mempunyai dua mesin dan merupakan pesawat Soviet pertama yang memiliki perangkat n...

 

Maip Periode Kapur Akhir, Maastrichtian PreЄ Є O S D C P T J K Pg N Material yang diketahui: (A), rekonstruksi rongga torakik pada tingkat keenam vertebra torakik (B), dan penggambaran interpretatif dari wilayah penggalian (C)TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSaurischiaFamiliMegaraptoridaeGenusMaip Tata namaDinamakan berdasarkanMaip (en) lbs Maip adalah sebuah genus dinosaurus theropoda megaraptoridae yang berasal dari lapisan batuan Periode Kapur Akhir (Maastrichtium)...

 

علي موسوي   معلومات شخصية الاسم الكامل سيد علي موسوي الميلاد 22 أبريل 1976 (العمر 47 سنة)[1]المحمرة، إيران الطول 1.86 م (6 قدم 1 بوصة) مركز اللعب مهاجم الجنسية إيران  مسيرة الشباب سنوات فريق هما 0000–1996 باس طهران المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1996–1998 باس طهران 19...

The building designed by Sam Scorer at Markham Moor services (sometimes known as the Markham Moor Petrol Station, Markham Moor Hypar or Markham Moor Papilo) is a Grade II listed building originally designed as a petrol station. It is located on the A1 south-bound at the Markham Moor junction services and was built between 1959 and 1960 with the aid of engineer Dr Kalman Hajnal-Kónyi. It is currently a Starbucks.[1] Building in Markham Moor junction servicesMarkham Moor Scorer Buildin...

 

Mother of Adolf Hitler (1860–1907) Klara HitlerKlara Pölzl in the 1870sBornKlara Pölzl(1860-08-12)12 August 1860Spital, Weitra, Austrian EmpireDied21 December 1907(1907-12-21) (aged 47)Linz, Austria-HungaryResting placeTown Cemetery, LeondingNationalityAustro-HungarianKnown forMother of Adolf HitlerSpouse Alois Hitler ​ ​(m. 1885; died 1903)​ChildrenGustavIdaOttoAdolfEdmundPaulaParentsJohann Baptist PölzlJohanna HiedlerRelativesJ...

 

Complex enzyme found in bacteria, archaea, and mitochondria of eukaryotes Cytochrome c oxidaseThe crystal structure of bovine cytochrome c oxidase in a phospholipid bilayer. The intermembrane space lies to top of the image. Adapted from PDB: 1OCC​ (It is a homodimer in this structure)IdentifiersEC no.1.9.3.1CAS no.9001-16-5 DatabasesIntEnzIntEnz viewBRENDABRENDA entryExPASyNiceZyme viewKEGGKEGG entryMetaCycmetabolic pathwayPRIAMprofilePDB structuresRCSB PDB PDBe PDBsumGene OntologyAmiGO...

Town of Mexico This article may be a rough translation from Spanish. It may have been generated, in whole or in part, by a computer or by a translator without dual proficiency. Please help to enhance the translation. The original article is under español in the languages list. See this article's entry on Pages needing translation into English for discussion. (January 2020) Town in MexicoVilla Insurgentes El CalabazalTownVilla InsurgentesVilla InsurgentesShow map of ZacatecasVilla Insurgente...

 

Saint Georgije BogićHoly hieromartyrBorn(1911-02-06)6 February 1911Pakrac, Kingdom of Croatia-Slavonia, Austria-HungaryDied17 June 1941(1941-06-17) (aged 30)Našice, Independent State of CroatiaVenerated inEastern Orthodox ChurchCanonized1998, Belgrade by Serbian Orthodox ChurchFeast17 June (O.S. 4 June)AttributesVested as a protopresbyter Đorđe Bogić (Serbian Cyrillic: Ђорђе Богић; 6 February 1911 – 17 June 1941) was a protopresbyter in the Serbian Orthodox Church a...

 

Folignocomune (dettagli) Foligno – VedutaPanorama LocalizzazioneStato Italia Regione Umbria Provincia Perugia AmministrazioneSindacoStefano Zuccarini (LSP) dal 9-6-2019 TerritorioCoordinate42°57′22″N 12°42′12″E / 42.956111°N 12.703333°E42.956111; 12.703333 (Foligno)Coordinate: 42°57′22″N 12°42′12″E / 42.956111°N 12.703333°E42.956111; 12.703333 (Foligno) Altitudine234 m s.l.m. Superficie264,67 km...

Williams nel 2017 Mark Williams (Bromsgrove, 22 agosto 1959) è un attore, comico e sceneggiatore britannico. È noto principalmente per aver interpretato Arthur Weasley nei film tratti dalla saga di Harry Potter e l'omonimo protagonista nella serie TV della BBC Padre Brown. Indice 1 Biografia 2 Filmografia parziale 2.1 Cinema 2.2 Televisione 3 Doppiatore 4 Doppiatori italiani 5 Altri progetti 6 Collegamenti esterni Biografia Dal pubblico britannico è conosciuto principalmente come uno dei p...

 

LukaLuka pada badan seorang priaInformasi umumSpesialisasiKedokteran gawat darurat Luka (bahasa Inggris: wound) adalah cedera yang muncul dengan cepat dan melibatkan kerusakan kulit (luka terbuka) atau memar (luka tertutup) akibat trauma fisik. Dalam patologi, luka adalah cedera akut yang merusak epidermis kulit. Berdasarkan Bahasa Indonesia, luka memiliki beberapa penyebutan sesuai letak luka itu berada. Contohnya luka yang terletak pada kepala di sekitar tumbuhnya rambut disebut 'pitak'. Se...

 

American politician Chester A. Dolan Jr.Chester A. Dolan Jr.President of the Massachusetts SenateIn office1949–1950Preceded byHarris S. RichardsonSucceeded byHarris S. RichardsonMember of the Massachusetts Senate from the 5th Suffolk DistrictIn office1939–1950Preceded byJames W. Hennigan Sr.Succeeded byJohn F. CollinsMember of theMassachusetts House of Representativesfrom the 10th Suffolk DistrictIn office1937–1939 Personal detailsBorn(1907-09-20)September 20, 1907Boston, MassachusettsD...

Al-Suqaylabiyya (ar) السقيلبيه Administration Pays Syrie Muhafazah (محافظة) Gouvernorat de Hama Démographie Population 17 313 hab. (2004) Géographie Coordonnées 35° 13′ nord, 36° 13′ est Altitude 220 m Localisation Géolocalisation sur la carte : Syrie Al-Suqaylabiyya modifier  Al-Suqaylabiyya (arabe : السقيلبيه, prononcée as-Suqailabiyya) est une ville de Syrie dont la population est constituée en majo...

 

將軍巴育·占奥差ประยุทธ์ จันทร์โอชา上將 MPCh MWM TChW 泰國樞密院議員现任就任日期2023年11月29日君主拉瑪十世議長素拉育·朱拉暖 泰國第29任總理任期2022年9月30日復職—2023年8月22日君主拉瑪十世副總理(英语:Deputy Minister of Thailand) 列表 巴威·翁素万塔那塞·巴滴玛巴功(英语:Thanasak Patimaprakorn) 威沙努·革岸(英语:Wissanu Krea-ngam) 比蒂耶�...

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

Cet article est une ébauche concernant l’art et une chronologie ou une date. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologies Données clés 1745 1746 1747  1748  1749 1750 1751Décennies :1710 1720 1730  1740  1750 1760 1770Siècles :XVIe XVIIe  XVIIIe  XIXe XXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الحبيب التوهامي وزير الصحة العمومية التونسي في المنصب14 أكتوبر 1983 – 20 يناير 1984 (3 أشهرٍ و6 أيامٍ) الرئيس ال�...