The most well-known example of an octonion algebra is the classical octonions, which are an octonion algebra over R, the field of real numbers. The split-octonions also form an octonion algebra over R. Up to R-algebra isomorphism, these are the only octonion algebras over the reals. The algebra of bioctonions is the octonion algebra over the complex numbersC.
The octonion algebra for N is a division algebra if and only if the form N is anisotropic. A split octonion algebra is one for which the quadratic form N is isotropic (i.e., there exists a non-zero vector x with N(x) = 0). Up to F-algebra isomorphism, there is a unique split octonion algebra over any field F.[1] When F is algebraically closed or a finite field, these are the only octonion algebras over F.
Octonion algebras are always non-associative. They are, however, alternative algebras, alternativity being a weaker form of associativity. Moreover, the Moufang identities hold in any octonion algebra. It follows that the invertible elements in any octonion algebra form a Moufang loop, as do the elements of unit norm.
The construction of general octonion algebras over an arbitrary field k was described by Leonard Dickson in his book Algebren und ihre Zahlentheorie (1927) (Seite 264) and repeated by Max Zorn.[2] The product depends on selection of a γ from k. Given q and Q from a quaternion algebra over k, the octonion is written q + Qe. Another octonion may be written r + Re. Then with * denoting the conjugation in the quaternion algebra, their product is
Cohl Furey has proposed that octonion algebras can be utilized in an attempt to reconcile components of the Standard Model.[3]
Classification
It is a theorem of Adolf Hurwitz that the F-isomorphism classes of the norm form are in one-to-one correspondence with the isomorphism classes of octonion F-algebras. Moreover, the possible norm forms are exactly the Pfister 3-forms over F.[4]
Since any two octonion F-algebras become isomorphic over the algebraic closure of F, one can apply the ideas of non-abelianGalois cohomology. In particular, by using the fact that the automorphism group of the split octonions is the split algebraic groupG2, one sees the correspondence of isomorphism classes of octonion F-algebras with isomorphism classes of G2-torsors over F. These isomorphism classes form the non-abelian Galois cohomology set .[5]
Okubo, Susumu (1995). Introduction to octonion and other non-associative algebras in physics. Montroll Memorial Lecture Series in Mathematical Physics. Vol. 2. Cambridge: Cambridge University Press. p. 22. ISBN0-521-47215-6. Zbl0841.17001.