The primary motivation for introducing the bracket was to develop a uniform framework for discussing all possible Lie algebra structures on a vector space, and subsequently the deformations of these structures. If V is a vector space and p ≥ −1 is an integer, let
be the space of all skew-symmetric (p + 1)-multilinear mappings of V to itself. The direct sum Alt(V) is a graded vector space. A Lie algebra structure on V is determined by a skew-symmetric bilinear map μ : V × V → V. That is to say, μ is an element of Alt1(V). Furthermore, μ must obey the Jacobi identity. The Nijenhuis–Richardson bracket supplies a systematic manner for expressing this identity in the form [μ, μ] = 0.
In detail, the bracket is a bilinear bracket operation defined on Alt(V) as follows. On homogeneous elements P ∈ Altp(V) and Q ∈ Altq(V), the Nijenhuis–Richardson bracket [P, Q]∧ ∈ Altp+q(V) is given by
where denotes (q+1, p)-shuffles of the indices, i.e. permutations of such that and .
On non-homogeneous elements, the bracket is extended by bilinearity.
Derivations of the ring of forms
The Nijenhuis–Richardson bracket can be defined on the vector valued forms Ω*(M, T(M)) on a smooth manifold M
in a similar way. Vector valued forms act as derivations on the supercommutative ring Ω*(M) of forms on M
by taking K to the derivation iK, and the Nijenhuis–Richardson bracket then corresponds to the commutator of two derivations. This identifies Ω*(M, T(M)) with the algebra of derivations that vanish on smooth functions. Not all derivations are of this form; for the structure of the full ring of all derivations see the article Frölicher–Nijenhuis bracket.
The Nijenhuis–Richardson bracket and the Frölicher–Nijenhuis bracket both make Ω*(M, T(M)) into a graded superalgebra, but have different degrees.
References
Lecomte, Pierre; Michor, Peter W.; Schicketanz, Hubert (1992). "The multigraded Nijenhuis–Richardson algebra, its universal property and application". J. Pure Appl. Algebra. 77 (1): 87–102. arXiv:math/9201257. doi:10.1016/0022-4049(92)90032-B.