Neural gas

Neural gas is an artificial neural network, inspired by the self-organizing map and introduced in 1991 by Thomas Martinetz and Klaus Schulten.[1] The neural gas is a simple algorithm for finding optimal data representations based on feature vectors. The algorithm was coined "neural gas" because of the dynamics of the feature vectors during the adaptation process, which distribute themselves like a gas within the data space. It is applied where data compression or vector quantization is an issue, for example speech recognition,[2] image processing[3] or pattern recognition. As a robustly converging alternative to the k-means clustering it is also used for cluster analysis.[4]

Algorithm

Suppose we want to model a probability distribution of data vectors using a finite number of feature vectors , where .

  1. For each time step
    1. Sample data vector from
    2. Compute the distance between and each feature vector. Rank the distances.
    3. Let be the index of the closest feature vector, the index of the second closest feature vector, and so on.
    4. Update each feature vector by:

In the algorithm, can be understood as the learning rate, and as the neighborhood range. and are reduced with increasing so that the algorithm converges after many adaptation steps.

The adaptation step of the neural gas can be interpreted as gradient descent on a cost function. By adapting not only the closest feature vector but all of them with a step size decreasing with increasing distance order, compared to (online) k-means clustering a much more robust convergence of the algorithm can be achieved. The neural gas model does not delete a node and also does not create new nodes.

Comparison with SOM

Compared to self-organized map, the neural gas model does not assume that some vectors are neighbors. If two vectors happen to be close together, they would tend to move together, and if two vectors happen to be apart, they would tend to not move together. In contrast, in an SOM, if two vectors are neighbors in the underlying graph, then they will always tend to move together, no matter whether the two vectors happen to be neighbors in the Euclidean space.

The name "neural gas" is because one can imagine it to be what an SOM would be like if there is no underlying graph, and all points are free to move without the bonds that bind them together.

Variants

A number of variants of the neural gas algorithm exists in the literature so as to mitigate some of its shortcomings. More notable is perhaps Bernd Fritzke's growing neural gas,[5] but also one should mention further elaborations such as the Growing When Required network[6] and also the incremental growing neural gas.[7] A performance-oriented approach that avoids the risk of overfitting is the Plastic Neural gas model.[8]

Growing neural gas

Fritzke describes the growing neural gas (GNG) as an incremental network model that learns topological relations by using a "Hebb-like learning rule",[5] only, unlike the neural gas, it has no parameters that change over time and it is capable of continuous learning, i.e. learning on data streams. GNG has been widely used in several domains,[9] demonstrating its capabilities for clustering data incrementally. The GNG is initialized with two randomly positioned nodes which are initially connected with a zero age edge and whose errors are set to 0. Since the in the GNG input data is presented sequentially one by one, the following steps are followed at each iteration:

  • It is calculated the errors (distances) between the two closest nodes to the current input data.
  • The error of the winner node (only the closest one) is respectively accumulated.
  • The winner node and its topological neighbors (connected by an edge) are moving towards the current input by different fractions of their respective errors.
  • The age of all edges connected to the winner node are incremented.
  • If the winner node and the second-winner are connected by an edge, such an edge is set to 0. Else, an edge is created between them.
  • If there are edges with an age larger than a threshold, they are removed. Nodes without connections are eliminated.
  • If the current iteration is an integer multiple of a predefined frequency-creation threshold, a new node is inserted between the node with the largest error (among all) and its topological neighbor presenting the highest error. The link between the former and the latter nodes is eliminated (their errors are decreased by a given factor) and the new node is connected to both of them. The error of the new node is initialized as the updated error of the node which had the largest error (among all).
  • The accumulated error of all nodes is decreased by a given factor.
  • If the stopping criterion is not met, the algorithm takes a following input. The criterion might be a given number of epochs, i.e., a pre-set number of times where all data is presented, or the reach of a maximum number of nodes.

Incremental growing neural gas

Another neural gas variant inspired in the GNG algorithm is the incremental growing neural gas (IGNG). The authors propose the main advantage of this algorithm to be "learning new data (plasticity) without degrading the previously trained network and forgetting the old input data (stability)."[7]

Growing when required

Having a network with a growing set of nodes, like the one implemented by the GNG algorithm was seen as a great advantage, however some limitation on the learning was seen by the introduction of the parameter λ, in which the network would only be able to grow when iterations were a multiple of this parameter.[6] The proposal to mitigate this problem was a new algorithm, the Growing When Required network (GWR), which would have the network grow more quickly, by adding nodes as quickly as possible whenever the network identified that the existing nodes would not describe the input well enough.

Plastic neural gas

The ability to only grow a network may quickly introduce overfitting; on the other hand, removing nodes on the basis of age only, as in the GNG model, does not ensure that the removed nodes are actually useless, because removal depends on a model parameter that should be carefully tuned to the "memory length" of the stream of input data.

The "Plastic Neural Gas" model[8] solves this problem by making decisions to add or remove nodes using an unsupervised version of cross-validation, which controls an equivalent notion of "generalization ability" for the unsupervised setting.

While growing-only methods only cater for the incremental learning scenario, the ability to grow and shrink is suited to the more general streaming data problem.

Implementations

To find the ranking of the feature vectors, the neural gas algorithm involves sorting, which is a procedure that does not lend itself easily to parallelization or implementation in analog hardware. However, implementations in both parallel software [10] and analog hardware[11] were actually designed.

References

  1. ^ Thomas Martinetz and Klaus Schulten (1991). "A "neural gas" network learns topologies" (PDF). Artificial Neural Networks. Elsevier. pp. 397–402.
  2. ^ F. Curatelli; O. Mayora-Iberra (2000). "Competitive learning methods for efficient Vector Quantizations in a speech recognition environment". In Osvaldo Cairó; L. Enrique Sucar; Francisco J. Cantú-Ortiz (eds.). MICAI 2000: Advances in artificial intelligence : Mexican International Conference on Artificial Intelligence, Acapulco, Mexico, April 2000 : proceedings. Springer. p. 109. ISBN 978-3-540-67354-5.
  3. ^ Angelopoulou, Anastassia; Psarrou, Alexandra; Garcia Rodriguez, Jose; Revett, Kenneth (2005). "Computer Vision for Biomedical Image Applications". In Yanxi Liu; Tianzi Jiang; Changshui Zhang (eds.). Computer vision for biomedical image applications: first international workshop, CVBIA 2005, Beijing, China, October 21, 2005 : proceedings. Lecture Notes in Computer Science. Vol. 3765. Springer. p. 210. doi:10.1007/11569541_22. ISBN 978-3-540-29411-5.
  4. ^ Fernando Canales; Max Chacon (2007). "Progress in Pattern Recognition, Image Analysis and Applications". In Luis Rueda; Domingo Mery (eds.). Progress in pattern recognition, image analysis and applications: 12th Iberoamerican Congress on Pattern Recognition, CIARP 2007, Viña del Mar-Valparaiso, Chile, November 13–16, 2007; proceedings. Lecture Notes in Computer Science. Vol. 4756. Springer. pp. 684–693. doi:10.1007/978-3-540-76725-1_71. ISBN 978-3-540-76724-4.
  5. ^ a b Fritzke, Bernd (1995). "A Growing Neural Gas Network Learns Topologies". Advances in Neural Information Processing Systems. 7: 625–632. Retrieved 2016-04-26.
  6. ^ a b Marsland, Stephen; Shapiro, Jonathan; Nehmzow, Ulrich (2002). "A self-organising network that grows when required". Neural Networks. 15 (8): 1041–1058. CiteSeerX 10.1.1.14.8763. doi:10.1016/s0893-6080(02)00078-3. PMID 12416693.
  7. ^ a b Prudent, Yann; Ennaji, Abdellatif (2005). "An incremental growing neural gas learns topologies". Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. Vol. 2. pp. 1211–1216. doi:10.1109/IJCNN.2005.1556026. ISBN 978-0-7803-9048-5. S2CID 41517545.
  8. ^ a b Ridella, Sandro; Rovetta, Stefano; Zunino, Rodolfo (1998). "Plastic algorithm for adaptive vector quantisation". Neural Computing & Applications. 7: 37–51. doi:10.1007/BF01413708. S2CID 1184174.
  9. ^ Iqbal, Hafsa; Campo, Damian; Baydoun, Mohamad; Marcenaro, Lucio; Martin, David; Regazzoni, Carlo (2019). "Clustering Optimization for Abnormality Detection in Semi-Autonomous Systems". 1st International Workshop on Multimodal Understanding and Learning for Embodied Applications. pp. 33–41. doi:10.1145/3347450.3357657. ISBN 978-1-4503-6918-3.
  10. ^ Ancona, Fabio; Rovetta, Stefano; Zunino, Rodolfo (1996). "A parallel approach to plastic neural gas". Proceedings of International Conference on Neural Networks (ICNN'96). Vol. 1. pp. 126–130. doi:10.1109/ICNN.1996.548878. ISBN 0-7803-3210-5. S2CID 61686854.
  11. ^ Ancona, Fabio; Rovetta, Stefano; Zunino, Rodolfo (1997). "Hardware implementation of the neural gas". Proceedings of International Conference on Neural Networks (ICNN'97). Vol. 2. pp. 991–994. doi:10.1109/ICNN.1997.616161. ISBN 0-7803-4122-8. S2CID 62480597.

Further reading

  • T. Martinetz, S. Berkovich, and K. Schulten. "Neural-gas" Network for Vector Quantization and its Application to Time-Series Prediction. IEEE-Transactions on Neural Networks, 4(4):558–569, 1993.
  • Martinetz, T.; Schulten, K. (1994). "Topology representing networks". Neural Networks. 7 (3): 507–522. doi:10.1016/0893-6080(94)90109-0.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2023. Peta Area Tergabung County Los Angeles Terdapat 88 kota di County Los Angeles, California. Setiap kota memiliki wali kota dan dewan kota. Kota Kota Tanggal bergabung Populasi per(Sensus 2020) Agoura Hills 01982-12-088 Desember 1982 20,299 Alhambra 0190...

 

 

Chronologie de la France ◄◄ 1777 1778 1779 1780 1781 1782 1783 1784 1785 ►► Chronologies La fin de l'incendie du théâtre du Palais-Royal, le 8 juin 1781. Hubert RobertDonnées clés 1778 1779 1780  1781  1782 1783 1784Décennies :1750 1760 1770  1780  1790 1800 1810Siècles :XVIe XVIIe  XVIIIe  XIXe XXeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burki...

 

 

Sporting event delegationEquatorial Guinea at the2008 Summer OlympicsIOC codeGEQNOCOlympic Committee of Equatorial Guineain BeijingCompetitors3 in 2 sportsFlag bearer Emilia Mikue OndoMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)19841988199219962000200420082012201620202024 Equatorial Guinea competed at the 2008 Summer Olympics in Beijing, which was held from 8 to 24 August 2008. The country's participation at London marked its seventh appearance in the S...

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

 

حركة نشيد شعار حركة نشيد اللغة الرسمية العربية رئيس الحركة سيف الدين عفانة المقرّ الرّسمي كلية الآداب والعلوم الإنسانية بسوسة (11-2009) منذ سنة 2011، لم تجد الحركة مقرا رسميا لها، ولم يثني عدم توفر المقر الحركة من تواصل نضالاتها خارج الكلية. تاريخ التأسيس 28 فبراير 2009 أهداف الحر�...

 

 

إبراهيم نصر الله Ibrahim Nasrallah معلومات شخصية الميلاد 2 ديسمبر 1954 (70 سنة)  عَمَّان  الإقامة عَمَّان  الجنسية  فلسطين،  الأردن الحياة العملية المهنة كاتب،  ومصور،  وصحفي،  وشاعر  اللغات العربية  أعمال بارزة الملهاة الفلسطينية الشرفات (سلسلة) الجوائز - الج...

Letter written by Abraham Lincoln The Bixby letter in the Boston Evening Transcript The Bixby letter is a brief, consoling message sent by President Abraham Lincoln in November 1864 to Lydia Parker Bixby, a widow living in Boston, Massachusetts, who was thought to have lost five sons in the Union Army during the American Civil War. Along with the Gettysburg Address and his second inaugural address, the letter has been praised as one of Lincoln's finest written works and is often reproduced in...

 

 

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表�...

 

 

Railway station in West Bengal, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bhogpur railway station – news · newspapers · books · scholar · JSTOR (December 2019) (Learn how and when to remove this message) Bhogpur Kolkata Suburban Railway stationBhogpur railway stationGeneral informationLocationBho...

Cet article est une ébauche concernant le jeu. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Le Caravage, Les Tricheurs, 1594-1595. Le jeu d’argent est la pratique d’un jeu associée à un intéressement financier à l’issue de la partie. Chaque joueur engage un certain montant financier dans le jeu, qui sera tout ou partie perdu, ou qui...

 

 

Musim Kejuaraan VFL 1899Skuat tim Fitzroy FCTim peserta8PremiersFitzroy (premiership ke-2)Minor premiersFitzroy (minor premiership ke-1)Pertandingan69Penonton terbanyak4.823Medalis leading goalkickerEddy James (Geelong)← 18981900 → Musim Victorian Football League 1899 adalah musim ke-3 dari penyelenggaraan VFL, kompetisi sepak bola menurut peraturan Australia. Juara (premier) edisi ini diraih oleh Fitzroy yang dalam musim kompetisi yang sama menjadi juara musim (minor pr...

 

 

Buddha18th-century Chinese statue of Vajradhara Part of a series onTibetan Buddhism Schools Nyingma Kadam Sakya Bodong Kagyu Jonang Gelug Rimé Key personalities First dissemination Padmasambhāva Śāntarakṣita Kamalaśīla Songtsen Gampo Trisong Detsen Ralpacan Second dissemination Atiśa Talika Abhayakirti Niguma Sukhasiddhi Milarepa Nyingma Yeshe Tsogyal Longchenpa Jigme Lingpa Patrul Rinpoche Dudjom Lingpa Mipham Kagyu Marpa Rangjung Dorje Jonang Dolpopa Taranatha Sakya Sakya Pandita G...

Young Teazer History United States NameYoung Teazer OwnerSamuel Adams Launched1813 Commissioned3 May 1813 HomeportNew York City FateDestroyed in explosion 27 June 1813 after HMS Hogue and HMS Orpheus trapped her General characteristics TypePrivateer Tons burthen120 or 124 [1] Length60 ft (18 m) (overall) Sail planSchooner Complement65,[1] or 73 Armament5 guns plus 3 wooden dummy guns NotesSource for info box dimensions[2] vteNaval battles of the War of ...

 

 

Municipality in Vysočina, Czech RepublicCikhájMunicipalityCrossroads in the centre of Cikháj FlagCoat of armsCikhájLocation in the Czech RepublicCoordinates: 49°38′42″N 15°58′3″E / 49.64500°N 15.96750°E / 49.64500; 15.96750Country Czech RepublicRegionVysočinaDistrictŽďár nad SázavouFirst mentioned1662Area • Total21.35 km2 (8.24 sq mi)Elevation675 m (2,215 ft)Population (2024-01-01)[1] •&...

 

 

مدينة كربلاء الرياضيةمعلومات عامةالبلد  العراق التشييد والافتتاحالافتتاح الرسمي 12 مايو 2016 الاستعمالالمستضيف نادي كربلاء المالك الحكومة العراقية الموقع الجغرافيالإحداثيات 30°26′N 47°47′E / 30.44°N 47.78°E / 30.44; 47.78 تعديل - تعديل مصدري - تعديل ويكي بيانات المدينة الر...

Core group of ancient Hebrew scriptures Tanakh redirects here. For other uses, see Tanakh (disambiguation). This article is about the Jewish text. For other uses, see Old Testament, Bible translations into Hebrew, and Hebrew Bible: A Critical Edition. Hebrew Bibleתַּנַ״ךְ‎, TanakhComplete set of scrolls, constituting the TanakhInformationReligionJudaismChristianityLanguageBiblical HebrewBiblical AramaicPeriod8th/7th centuries BCE – 2nd/1st centuries BCEHebrew Bible at Hebrew W...

 

 

National holiday in Japan (11 February) This article is about the Japanese holiday. For the South Korean holiday, see National Foundation Day (Korea). National Foundation DayA mikoshi is carried during a paradeOfficial nameKenkoku Kinen no Hi (建国記念の日)Observed byJapanTypePublicSignificanceCelebrates the founding of the nationCelebrationsFamily reunions, parades, concertsDate11 FebruaryFrequencyAnnual National Foundation Day (建国記念の日, Kenkoku Kinen no Hi) is an annua...

 

 

Italian cardinal His EminenceFederico BorromeoCardinal, Archbishop of MilanPortrait by Giulio Cesare Procaccini, 1610ChurchCatholic ChurchArchdioceseMilanAppointed24 April 1595Term ended21 September 1631PredecessorGaspare ViscontiSuccessorCesare MontiOther post(s)Cardinal-Priest of Santa Maria degli AngeliOrdersConsecration11 June 1595by Clement VIIICreated cardinal18 December 1587by Sixtus VPersonal detailsBorn18 August 1564Milan, Duchy of MilanDied21 September 1631(1631-09-21) (aged...

إرَم ذات العماد مُختلف فيها أهي مدينة؟ أم قبيلة؟، للآية القرآنية ﴿إِرَمَ ذَاتِ الْعِمَادِ ۝٧﴾ [الفجر:7] فسر بعضهم هذه الآية بأن المقصود هو قبيلة أرم هم الذين لم يخلق مثلهم كبشر في الضخامة والقوة، بينما فسرها بعضهم بأن المقصود مدينة تسمى أرم هي التي لم يخلق مثلها[1&#...

 

 

Town in Saxony-Anhalt, Germany This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Merseburg – news · newspapers · books · scholar · JSTOR (August 2014) (Learn how and when to remove this message) Town in Saxony-Anhalt, GermanyMerseburg TownMerseburg Castle Coat of armsLocation of Merseburg within Saalekreis dis...