Neodymium nickelate is a nickelate of neodymium with a chemical formula NdNiO3. In this compound, the neodymium atom is in the +3 oxidation state.[citation needed]
It decomposes in high temperature (950 °C) by nitrogen:[2]
4 NdNiO3 → 2 Nd2NiO4 + 2 NiO + O2
It can also be reduced to the monovalent nickel compound NdNiO2 by sodium hydride at 160 °C.[4]
Physical properties
Neodymium nickelate shows metal-insulator transition (MIT) under low temperature.[5][6] The temperature at which it transforms (TMIT) is 200K,[7] which is higher than praseodymium nickelate (130K) but lower than samarium nickelate (400K).[5][7][8][page needed] It transforms from antiferromagnetism to paramagnetism. It has demonstrated to be a first-order phase transition (this applies for praseodymium nickelate as well).[5] The temperature (TN) can be changed by varying the NiO6 octahedral distortion.[5][6] It is the only lathanide nickelate to have the same TMIT as TN.[5]
Uses
In a 2010 study, it was found that neodymium nickelate as an anode material provided 1.7 times the current density of typical LSM anodes when integrated into a commercial SOEC and operated at 700 °C, and approximately 4 times the current density when operated at 800 °C. The increased performance is postulated to be due to higher "overstoichiometry" of oxygen in the neodymium nickelate, making it a successful conductor of both ions and electrons.[9]
Neodymium nickelate can also be used in electrocatalysts, synapse transistors, photovoltaics, memory resistors, biosensors, and electric-field sensors.[5]
^Escote, M.T.; da Silva, A.M.L.; Matos, J.R.; Jardim, R.F. (May 2000). "General Properties of Polycrystalline LnNiO3 (Ln=Pr, Nd, Sm) Compounds Prepared through Different Precursors". Journal of Solid State Chemistry. 151 (2): 298–307. Bibcode:2000JSSCh.151..298E. doi:10.1006/jssc.2000.8657.
^M.A. Hayward, M.J. Rosseinsky (June 2003). "Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride". Solid State Sciences. 5 (6): 839–850. Bibcode:2003SSSci...5..839H. doi:10.1016/S1293-2558(03)00111-0.
^ abcdefYang, Hongwei; Wen, Zhiwei; Shu, Jun; Cui, Yajing; Chen, Yongliang; Zhao, Yong (2021). "Structural, electrical, and magnetic properties of bulk Nd1–xSrxNiO3 (x=0–0.3)". Solid State Communications. 336: 114420. Bibcode:2021SSCom.33614420Y. doi:10.1016/j.ssc.2021.114420. ISSN0038-1098.