Mollweide projection

Mollweide projection of the world
The Mollweide projection with Tissot's indicatrix of deformation

The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for maps of the world or celestial sphere. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions.

The projection was first published by mathematician and astronomer Karl (or Carl) Brandan Mollweide (1774–1825) of Leipzig in 1805. It was reinvented and popularized in 1857 by Jacques Babinet, who gave it the name homalographic projection. The variation homolographic arose from frequent nineteenth-century usage in star atlases.[1]

Nine-year WMAP image (2012) of the cosmic microwave background radiation.[2][3] Projected using the Mollweide projection.
Sea-surface freon levels measured by the Global Ocean Data Analysis Project. Projected using the Mollweide projection.

Properties

The Mollweide is a pseudocylindrical projection in which the equator is represented as a straight horizontal line perpendicular to a central meridian that is one-half the equator's length. The other parallels compress near the poles, while the other meridians are equally spaced at the equator. The meridians at 90 degrees east and west form a perfect circle, and the whole earth is depicted in a proportional 2:1 ellipse. The proportion of the area of the ellipse between any given parallel and the equator is the same as the proportion of the area on the globe between that parallel and the equator, but at the expense of shape distortion, which is significant at the perimeter of the ellipse, although not as severe as in the sinusoidal projection.

Shape distortion may be diminished by using an interrupted version. A sinusoidal interrupted Mollweide projection discards the central meridian in favor of alternating half-meridians which terminate at right angles to the equator. This has the effect of dividing the globe into lobes. In contrast, a parallel interrupted Mollweide projection uses multiple disjoint central meridians, giving the effect of multiple ellipses joined at the equator. More rarely, the projection can be drawn obliquely to shift the areas of distortion to the oceans, allowing the continents to remain truer to form.

The Mollweide, or its properties, has inspired the creation of several other projections, including the Goode's homolosine, van der Grinten and the Boggs eumorphic.[4]

Mathematical formulation

The projection transforms from latitude and longitude to map coordinates x and y via the following equations:[5]

where θ is an auxiliary angle defined by

and λ is the longitude, λ0 is the central meridian, φ is the latitude, and R is the radius of the globe to be projected. The map has area 4πR2, conforming to the surface area of the generating globe. The x-coordinate has a range of [−2R2, 2R2], and the y-coordinate has a range of [−R2, R2].

Equation (1) may be solved with rapid convergence (but slow near the poles) using Newton–Raphson iteration:[5]

[note 1]


If φ = ±π/2, then also θ = ±π/2. In that case the iteration should be bypassed; otherwise, division by zero may result.

There exists a closed-form inverse transformation:[5]

where θ can be found by the relation

The inverse transformations allow one to find the latitude and longitude corresponding to the map coordinates x and y.

Alterations

Allen K. Philbrick (1953) Sinu-Mollweide uninterrupted projection, with Tissot indicatrices

See also

Notes

  1. ^ The formula in the text helps the reader confirm that the formula is correct. For numerical computation the denominator should be changed, starting with the double angle identity.
    In numerical computation, the original denominator could result in zero for θ near ±π/2 (catastrophic cancellation). This substitution is true for all angles and avoids the problem near θ = ±π/2 without making it a special case.

References

  1. ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 112–113, ISBN 0-226-76747-7.
  2. ^ Gannon, Megan (December 21, 2012). "New 'Baby Picture' of Universe Unveiled". Space.com. Retrieved December 21, 2012.
  3. ^ Bennett, C.L.; Larson, L.; Weiland, J.L.; Jarosk, N.; Hinshaw, N.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; Komatsu, E.; Nolta, M.R.; Page, L.; Spergel, D.N.; Wollack, E.; Dunkley, J.; Kogut, A.; Limon, M.; Meyer, S.S.; Tucker, G.S.; Wright, E.L. (2013). "Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results". The Astrophysical Journal Supplement Series. 208 (2): 20. arXiv:1212.5225. Bibcode:2013ApJS..208...20B. doi:10.1088/0067-0049/208/2/20. S2CID 119271232.
  4. ^ Map Projections – A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp. 249–252
  5. ^ a b c Weisstein, Eric W. "Mollweide Projection". MathWorld.

Read other articles:

Questa voce sugli argomenti laghi del Canada e geografia della Columbia Britannica è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Lago KootenayMappa del lago Kootenay, nella Columbia BritannicaStato Canada Coordinate49°38′N 116°55′W / 49.633333°N 116.916667°W49.633333; -116.916667Coordinate: 49°38′N 116°55′W / 49.633333°N 116.916667°W49.633333; -116.916667 Altitudine532 m s.l.m. Dimension...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Doi Chiang DaoTitik tertinggiKetinggian2,175 mGeografiLetakThailand Gunung Doi Chiang Dao (Thai: ดอยเชียงดาวcode: th is deprecated , pengucapan [dɔ̄ːj t͡ɕʰīa̯ŋ dāːw]), juga dikenal sebagai Gunung Doi Luang Chiang D...

 

Town in Virginia, United StatesWarsawTownDowntown Warsaw 2020Location of Warsaw, VirginiaCoordinates: 37°57′27″N 76°45′30″W / 37.95750°N 76.75833°W / 37.95750; -76.75833CountryUnited StatesStateVirginiaCountyRichmondGovernment • TypeCouncil - Manager • MayorRandall L. Phelps • Town ManagerJoseph N. Quesenberry • Police ChiefTrey BlakeArea[1] • Total3.05 sq mi (7.91 km2) ...

Politique commune de l'immigration Description Espace de convergence des législations nationales des États membres de l'Union européenne Administration Traité Article 79 du TFUE modifier  La politique commune de l'immigration de l'Union européenne commencé à se développer à partir de l'intégration de l'acquis de Schengen dans le droit de l'Union européenne[1] et le constat selon lequel l'Union européenne est devenue l'une des principales régions de destination des voies mig...

 

German sports club This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: FC St. Pauli – news · newspapers · books · scholar · JSTOR (May 2010) (Learn how and whe...

 

People of Punjabi origin living in the UK British PunjabisDistribution by regional areaTotal population700,000 (2006)[1]Regions with significant populationsMainly England · Smaller communities in Scotland, Wales and Northern IrelandLanguagesEnglish · Punjabi · Hindi · Urdu · Bagri · Pothwari  · PahariReligionSikhism · Hinduism · Islam · Christ...

Oak ParkStasiun komuter PTVLokasiWaterloo Road, Oak ParkMelbourne, VictoriaAustraliaPemilikVicTrackOperatorMetro TrainsJalur  CraigieburnJumlah peron2 sisiJumlah jalur2KonstruksiJenis strukturTanahParkir37Informasi lainZona tarifMyki Zona 1/2Situs webPublic Transport VictoriaSejarahDibuka13 Agustus 1956Operasi layanan Stasiun sebelumnya   Metro Trains   Stasiun berikutnya Pascoe Valemenuju Flinders Street Jalur CraigieburnGlenroymenuju Craigieburn Sunting kotak info �...

 

آدم زيرتال   معلومات شخصية اسم الولادة (بالفرنسية: Adam Zylbertal)‏[1]  الميلاد 3 ديسمبر 1936   الخضيرة[1]  الوفاة 18 أكتوبر 2015 (78 سنة)   تل أبيب  مواطنة إسرائيل  الحياة العملية المدرسة الأم جامعة تل أبيب  شهادة جامعية دكتواره الفلسفة  المهنة عالم إنسان،  ...

 

American soccer player Djordje Mihailovic Mihailovic with Chicago Fire in 2017Personal informationFull name Djordje Aleksandar Mihailovic[1]Date of birth (1998-11-10) November 10, 1998 (age 25)Place of birth Jacksonville, Florida, United StatesHeight 5 ft 10 in (1.78 m)[2]Position(s) Attacking midfielder, wingerTeam informationCurrent team Colorado RapidsNumber 10Youth career2003–2013 Chicago Blast2013–2017 Chicago FireSenior career*Years Team Apps (Gls...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

 

Midwest Rugby PremiershipCurrent season, competition or edition: 2023SportRugby unionFounded2015; 9 years ago (2015)Organising bodyMidwest Rugby UnionCountryUnited StatesMost recentchampion(s)St. Louis Bombers Rugby Football Club (2023-24)Official websitemidwest.rugby/premiership The Midwest Rugby Premiership is a rugby union competition in the United States that serves mainly as the Division I league for the Midwest Conference (National Competitive Region 1), but also inclu...

 

American electronics company This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (June 2020) (Learn how and when to remove this message) Harman International Industries, Inc.Company typeSubsidiaryIndustryAudio electronicsFounded1980; 44 years ago (1980)FoundersSidney HarmanBernard KardonHeadquarters...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Sethubhavachatram block – news · newspapers · books · scholar · JSTOR (August 2020) Sethubhavachatram block is a revenue block in the Peravurani taluk of Thanjavur district, Tamil Nadu, India. There are a total of 37 villages in the block. The block d...

 

Salishan language of North America Lower ChehalisŁəw̓ál̕məšNative toUnited StatesRegionsouth of Olympic Peninsula, WashingtonEthnicityChehalis peopleExtinct1990s[1]Language familySalishan CoastTsamosanMaritimeLower ChehalisLanguage codesISO 639-3ceaGlottologlowe1427Lower Chehalis is classified as Extinct by the UNESCO Atlas of the World's Languages in Danger[2] Lower Chehalis (Łəw̓ál̕məš) is a member of the Tsamosan (or Olympic Peninsula) branch of the Coast...

 

Canegratecomune Canegrate – VedutaPalazzo Visconti-Castelli LocalizzazioneStato Italia Regione Lombardia Città metropolitana Milano AmministrazioneSindacoMatteo Modica (lista civica di centro-sinistra) dal 12-6-2022 (1º mandato) TerritorioCoordinate45°34′N 8°56′E45°34′N, 8°56′E (Canegrate) Altitudine196 m s.l.m. Superficie5,25[1] km² Abitanti12 488[2] (31-12-2021) Densità2 378,67 ab./km² Comuni confinantiBu...

Football match2019 Magyar Kupa FinalGroupama Arena hosted the finalEvent2018–19 Magyar Kupa Budapest Honvéd Fehérvár 1 2 Date25 May 2019 (2019-05-25)VenueGroupama Arena, BudapestRefereeZoltán IványiAttendance12,777← 2018 2020 → The 2019 Magyar Kupa Final was the final match of the 2018–19 Magyar Kupa, played between Budapest Honvéd and Fehérvár on 25 May 2019 at the Groupama Arena in Budapest, Hungary.[1] Teams Team Previous finals appearances (b...

 

Ancient Egyptian cow goddess Part of a series onAncient Egyptian religion Beliefs Afterlife Cosmology Duat Ma'at Mythology Index Numerology Philosophy Soul Practices Funerals Offerings: Offering formula Temples Pyramids Deities (list)Ogdoad Amun Amunet Hauhet Heh Kauket Kek Naunet Nu Ennead Atum Geb Isis Nephthys Nut Osiris Set Shu Tefnut A Aati Aker Akhty Amenhotep, son of Hapu Amesemi Ammit Am-heh Amu-Aa Anat Andjety Anhur Anput Anubis Anuket Apedemak Apep Apis Apt Aqen Arensnuphis Ash Asse...

 

American bodybuilder, actor, and model (1928–2023) Ed FuryFury with model Jackie Coey in 1953BornRupert Edmund Holovchik(1928-06-06)June 6, 1928Long Island, New York, U.S.DiedFebruary 24, 2023(2023-02-24) (aged 94)Los Angeles, California, U.S.Occupation(s)Bodybuilder, actor, modelYears active1946–1996Height6 ft 0 in (1.83 m)SpouseShelly Ed Fury (born Rupert Edmund Holovchik; June 6, 1928 – February 24, 2023) was an American bodybuilder, actor, and model. He is b...

L'Occitanie est la 4e région touristique en France avec 13 milliards d’euros de recettes touristiques et 181 millions de nuitées annuelles en moyenne dont 23 millions en plein air avec 14,2 millions de touristes sur le littoral dont 7 millions d'étrangers et 15 millions dans les hôtels . 1re pour l'hôtellerie en plein air (pour la capacité et la fréquentation) avec 1 326 campings dont 159 700 emplacements (65 % des touristes étrangers préfèrent le camping). 1re pour les stati...

 

River in Alberta, CanadaJames RiverThe James River near Sundre, AlbertaLocationCountryCanadaProvinceAlbertaPhysical characteristicsSource  • locationJames Lake • coordinates51°43′55″N 115°25′56″W / 51.73194°N 115.43222°W / 51.73194; -115.43222 • elevation1,673 m (5,489 ft) Mouth  • locationRed Deer River • coordinates51°54′31″N 114°33′51″Wþ...