The first to study atomic beam experiments was Louis Dunoyer de Segonzac 1911, but were simple experiments to confirm that atoms travelled in straight lines when not acted on by external forces.[2]
When the 1922 Stern-Gerlach paper appeared is caused a sensation: they claimed to have experimentally demonstrated "space quantization": clear evidence of quantum effects at a time when classical models were still considered viable.[4]: 50 The initial quantum explanation of the measurement -- as an observation of orbital angular momentum -- was not correct. Five years of intense work on quantum theory was needed before it was realized that the experiment was in fact the first demonstration quantum electron spin[2] Stern's group would go on to create pioneering experiments with atomic beams, and later with molecular beams. The advances of Stern and collaborators led to decisive discoveries including: the discovery of space quantization; de Broglie matter waves; anomalous magnetic moments of the proton and neutron; recoil of an atom of emission of a photon; and the limitation of scattering cross-sections for molecular collisions imposed by the uncertainty principle[2]
The first to report on the relationship between dipole moments and deflection in a molecular beam (using binary salts such as KCl) was Erwin Wrede in 1927.[5][4]
^van de Meerakker, Sebastiaan Y. T.; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard (2012-03-27). "Manipulation and Control of Molecular Beams". Chemical Reviews. 112 (9). American Chemical Society (ACS): 4828–4878. doi:10.1021/cr200349r. hdl:2066/103491. ISSN0009-2665. PMID22449067.
^ abcFriedrich, Bretislav; Schmidt-Böcking, Horst (2021), Friedrich, Bretislav; Schmidt-Böcking, Horst (eds.), "Otto Stern's Molecular Beam Method and Its Impact on Quantum Physics", Molecular Beams in Physics and Chemistry, Cham: Springer International Publishing, pp. 37–88, Bibcode:2021mbpc.book...37F, doi:10.1007/978-3-030-63963-1_5, ISBN978-3-030-63962-4
^"Wrede, Erwin (1927). "Über die Ablenkung von Molekularstrahlen elektrischer Dipolmoleküle im inhomogenen elektrischen Feld". Zeitschrift für Physik (in German). 44 (4–5). Springer Science and Business Media LLC: 261–268. Bibcode:1927ZPhy...44..261W. doi:10.1007/bf01391193. ISSN1434-6001. S2CID120815653.
^Rabi, I. I.; Millman, S.; Kusch, P.; Zacharias, J. R. (1939-03-15). "The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments. The Magnetic Moments of 3Li6, 3Li7 and 9F19". Physical Review. 55 (6). American Physical Society (APS): 526–535. doi:10.1103/physrev.55.526. ISSN0031-899X.