Mixed Hodge structure

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

In mixed Hodge theory, where the decomposition of a cohomology group may have subspaces of different weights, i.e. as a direct sum of Hodge structures

where each of the Hodge structures have weight . One of the early hints that such structures should exist comes from the long exact sequence associated to a pair of smooth projective varieties . This sequence suggests that the cohomology groups (for ) should have differing weights coming from both and .

Motivation

Originally, Hodge structures were introduced as a tool for keeping track of abstract Hodge decompositions on the cohomology groups of smooth projective algebraic varieties. These structures gave geometers new tools for studying algebraic curves, such as the Torelli theorem, Abelian varieties, and the cohomology of smooth projective varieties. One of the chief results for computing Hodge structures is an explicit decomposition of the cohomology groups of smooth hypersurfaces using the relation between the Jacobian ideal and the Hodge decomposition of a smooth projective hypersurface through Griffith's residue theorem. Porting this language to smooth non-projective varieties and singular varieties requires the concept of mixed Hodge structures.

Definition

A mixed Hodge structure[1] (MHS) is a triple such that

  1. is a -module of finite type
  2. is an increasing -filtration on ,
  3. is a decreasing -filtration on ,

where the induced filtration of on the graded pieces

are pure Hodge structures of weight .

Remark on filtrations

Note that similar to Hodge structures, mixed Hodge structures use a filtration instead of a direct sum decomposition since the cohomology groups with anti-holomorphic terms, where , don't vary holomorphically. But, the filtrations can vary holomorphically, giving a better defined structure.

Morphisms of mixed Hodge structures

Morphisms of mixed Hodge structures are defined by maps of abelian groups

such that

and the induced map of -vector spaces has the property

Further definitions and properties

Hodge numbers

The Hodge numbers of a MHS are defined as the dimensions

since is a weight Hodge structure, and

is the -component of a weight Hodge structure.

Homological properties

There is an Abelian category[2] of mixed Hodge structures which has vanishing -groups whenever the cohomological degree is greater than : that is, given mixed hodge structures the groups

for [2]pg 83.

Mixed Hodge structures on bi-filtered complexes

Many mixed Hodge structures can be constructed from a bifiltered complex. This includes complements of smooth varieties defined by the complement of a normal crossing variety. Given a complex of sheaves of abelian groups and filtrations [1] of the complex, meaning

There is an induced mixed Hodge structure on the hyperhomology groups

from the bi-filtered complex . Such a bi-filtered complex is called a mixed Hodge complex[1]: 23 

Logarithmic complex

Given a smooth variety where is a normal crossing divisor (meaning all intersections of components are complete intersections), there are filtrations on the logarithmic de Rham complex given by

It turns out these filtrations define a natural mixed Hodge structure on the cohomology group from the mixed Hodge complex defined on the logarithmic complex .

Smooth compactifications

The above construction of the logarithmic complex extends to every smooth variety; and the mixed Hodge structure is isomorphic under any such compactificaiton. Note a smooth compactification of a smooth variety is defined as a smooth variety and an embedding such that is a normal crossing divisor. That is, given compactifications with boundary divisors there is an isomorphism of mixed Hodge structure

showing the mixed Hodge structure is invariant under smooth compactification.[2]

Example

For example, on a genus plane curve logarithmic cohomology of with the normal crossing divisor with can be easily computed[3] since the terms of the complex equal to

are both acyclic. Then, the Hypercohomology is just

the first vector space are just the constant sections, hence the differential is the zero map. The second is the vector space is isomorphic to the vector space spanned by

Then has a weight mixed Hodge structure and has a weight mixed Hodge structure.

Examples

Complement of a smooth projective variety by a closed subvariety

Given a smooth projective variety of dimension and a closed subvariety there is a long exact sequence in cohomology[4]pg7-8

coming from the distinguished triangle

of constructible sheaves. There is another long exact sequence

from the distinguished triangle

whenever is smooth. Note the homology groups are called Borel–Moore homology, which are dual to cohomology for general spaces and the means tensoring with the Tate structure add weight to the weight filtration. The smoothness hypothesis is required because Verdier duality implies , and whenever is smooth. Also, the dualizing complex for has weight , hence . Also, the maps from Borel-Moore homology must be twisted by up to weight is order for it to have a map to . Also, there is the perfect duality pairing

giving an isomorphism of the two groups.

Algebraic torus

A one dimensional algebraic torus is isomorphic to the variety , hence its cohomology groups are isomorphic to

The long exact exact sequence then reads

Since and this gives the exact sequence

since there is a twisting of weights for well-defined maps of mixed Hodge structures, there is the isomorphism

Quartic K3 surface minus a genus 3 curve

Given a quartic K3 surface , and a genus 3 curve defined by the vanishing locus of a generic section of , hence it is isomorphic to a degree plane curve, which has genus 3. Then, the Gysin sequence gives the long exact sequence

But, it is a result that the maps take a Hodge class of type to a Hodge class of type .[5] The Hodge structures for both the K3 surface and the curve are well-known, and can be computed using the Jacobian ideal. In the case of the curve there are two zero maps

hence contains the weight one pieces . Because has dimension , but the Leftschetz class is killed off by the map

sending the class in to the class in . Then the primitive cohomology group is the weight 2 piece of . Therefore,

The induced filtrations on these graded pieces are the Hodge filtrations coming from each cohomology group.

See also

References

  1. ^ a b c Filippini, Sara Angela; Ruddat, Helge; Thompson, Alan (2015). "An Introduction to Hodge Structures". Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs. Vol. 34. pp. 83–130. arXiv:1412.8499. doi:10.1007/978-1-4939-2830-9_4. ISBN 978-1-4939-2829-3. S2CID 119696589.
  2. ^ a b c Peters, C. (Chris) (2008). Mixed hodge structures. Steenbrink, J. H. M. Berlin: Springer. ISBN 978-3-540-77017-6. OCLC 233973725.
  3. ^ Note we are using Bézout's theorem since this can be given as the complement of the intersection with a hyperplane.
  4. ^ Corti, Alessandro. "Introduction to mixed Hodge theory: a lecture to the LSGNT" (PDF). Archived (PDF) from the original on 2020-08-12.
  5. ^ Griffiths; Schmid (1975). Recent developments in Hodge theory: a discussion of techniques and results. Oxford University Press. pp. 31–127.

Examples

In Mirror Symmetry

Read other articles:

Ivano Pezzuto Ivano Pezzuto prima di Como-Reggina (2022) Informazioni personali Arbitro di Calcio Sezione Lecce Professione Impiegato Attività nazionale Anni Campionato Ruolo 2008-20112011-20142014-20202020- Serie DLega ProSerie BSerie A e B ArbitroArbitroArbitroArbitro Ivano Pezzuto (Lecce, 13 febbraio 1984) è un arbitro di calcio italiano. Indice 1 Carriera 2 Note 3 Voci correlate 4 Collegamenti esterni Carriera Svolge la professione di impiegato di banca. Nato a Lecce nel 1984, matura l...

 

ARMLogo ARMDesignerARM HoldingsBits32-bit & 64-bit implementasiIntroduced1983VersionARMv8[1]DesignRISCTypeRegister-RegisterEncodingFixed (Tetap)BranchingCondition codeEndiannessBi (Little as default)ExtensionsNEON, Thumb, Jazelle, VFP, A64Registers16/31[1] Arsitektur ARM merupakan arsitektur prosesor 32-bit RISC yang dikembangkan oleh ARM Limited. Dikenal sebagai Advanced RISC Machine di mana sebelumnya dikenal sebagai Acorn RISC Machine. Pada awalnya merupakan prosesor de...

 

تتميز عملات اليورو النمساوية بتصميم فريد لكل فئة ، مع موضوع مشترك لكل سلسلة من العملات المعدنية الثلاث. تتميز العملات المعدنية الصغيرة بالزهور النمساوية, والعملات المعدنية المتوسطة أمثلة للهندسة المعمارية من عاصمة النمسا, فيينا, والعملات المعدنية الشهيرة في النمسا. جميع...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SDN Buah Batu Baru merupakan salah satu sekolah dasar di Kota Bandung, beralamat di Jl. Buah Batu Bandung No.273, Lengkong, Kota Bandung, Jawa Barat. Artikel bertopik sekolah ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkann...

 

Disambiguazione – Se stai cercando altre principesse danesi con questo nome, vedi Anna di Danimarca (disambigua). Anna Maria di DanimarcaLa regina Anna Maria con la figlia Alessia nel 1965Regina consorte degli ElleniStemma In carica18 settembre 1964 –1⁰ giugno 1973(8 anni e 256 giorni) PredecessoreFederica di Hannover SuccessoreMonarchia abolita Nome completodanese: Anne-Marie Dagmar Ingriditaliano: Anna Maria Dagmar Ingrid TrattamentoSua Maestà Altri titoliPrinci...

 

علم المناعة خلية متعادلة (بلون بنفسجي) تلتهم بكتيريا من نوع المكورات العنقودية الذهبية المقاومة للميثيسيلين. الجهاز الجهاز المناعي فرع من علم الأحياء،  والطب الحيوي،  وطب الأطفال  التقسيمات علم المناعة الخلويةعلم المناعة السريرية علم الوراثة المناعي علم الناعة ا...

Trotoar dan lampu lalu lintas di Hagerstown, Maryland, Amerika Serikat Keselamatan lalu lintas bertujuan untuk menurunkan korban kecelakaan lalu-lintas di jalan. Jumlah korban kecelakaan lalu lintas jauh lebih tinggi dari kecelakaan transportasi laut, kereta api dan udara. Keselamatan lalu lintas merupakan suatu program untuk menurunkan angka kecelakaan beserta seluruh akibatnya, karena kecelakaan mengakibatkan kemiskinan bagi keluarga korban kecelakaan. Program keselamatan Mempengaruhi pengg...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

2015 UEFA European Under-19 Championship2015 Ευρωπαϊκό πρωτάθλημα ποδοσφαίρου Κ-19Tournament detailsHost countryGreeceDates6–19 JulyTeams8 (from 1 confederation)Venue(s)3 (in 3 host cities)Final positionsChampions Spain (10th title)Runners-up RussiaTournament statisticsMatches played15Goals scored36 (2.4 per match)Attendance70,612 (4,707 per match)Top scorer(s) Borja Mayoral (3 goals)Best player(s) Marco Asensio← 2014 2...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Hotel» – noticias · libros · académico · imágenesEste aviso fue puesto el 1 de abril de 2017. Para otros usos de este término, véase Hotel (desambiguación). El Hotel Negresco (5 estrellas) en Niza, Francia. El Hotel Kämp (5 estrellas) en Helsinki, Finlandia. Un hotel es un edificio planificado y acondicionado para otorgar servicios de alojamiento a las ...

 

Карта территориальных изменений и оккупационных зон в Германии после 1945 г. На заключительном этапе Второй мировой войны военными силами антигитлеровской коалиции[1] были совершены акты насилия в отношении мирного населения Германии[2]. Так как после окончания в�...

 

Period of Colombian history Part of a series onMuisca culture Topics Agriculture Architecture Art Astronomy Calendar Cuisine Economy Language Mummies Music Mythology Numerals Religion Research Collections Scholars Sites Warfare Women Geography Flora and fauna Altiplano Bogotá savanna Eastern Hills Tenza Valley The Salt People Nemocón Zipaquirá Main neighbours Guane Muzo Panche History and timeline Prehistory Herrera Period Muisca Confederation Bacatá Hunza Suamox Tundama Spanish conquest ...

National Rail station in London, England Kidbrooke KidbrookeLocation of Kidbrooke in Greater LondonLocationKidbrookeLocal authorityRoyal Borough of GreenwichManaged bySoutheasternStation codeKDBDfT categoryDNumber of platforms2AccessibleYes[1]Fare zone3National Rail annual entry and exit2018–19 1.525 million[2]2019–20 1.558 million[2]2020–21 0.430 million[2]2021–22 1.011 million[2]2022–23 1.201 million[2]Key dates1 May 1895OpenedOther ...

 

Second-level administrative divisions of Bangladesh This article is part of a series on thePolitics of the People's Republic of Bangladesh Constitution Amendments Law of Bangladesh Bangladesh Code Penal Code Human rights Article 70 Judicial review Government President: Mohammed Shahabuddin Prime Minister: Sheikh Hasina Cabinet: Hasina V Taxation Agencies Civil Service Local governments Parliament Speaker: Shirin Sharmin Chaudhury Leader of the House: Sheikh Hasina Leader of the Opposition: GM...

 

Kereta gantung di Salta. Kereta gantung di Zell am See di Austrian Alps. Kereta gantung adalah sebuah kereta yang menggantung yang berjalan menggunakan kabel. Jalur kereta gantung umumnya berupa garis lurus dan hanya dapat berbelok pada sudut yang kecil di stasiun antara. Awalnya kereta gantung digunakan pada tempat-tempat wisata misalnya di daerah bersalju, daerah pegunungan seperti pegunungan Alpen, atau taman hiburan, namun kini telah juga digunakan untuk transportasi umum di daerah perkot...

Centre pénitentiaire de Vendin-le-Vieil Les miradors du centre pénitentiaire lors de la construction de l'établissement en 2013. Localisation Pays France Région Hauts-de-France Département Pas-de-Calais DISP Lille Coordonnées 50° 27′ 21″ nord, 2° 49′ 15″ est Géolocalisation sur la carte : Pas-de-Calais Centre pénitentiaire de Vendin-le-Vieil Géolocalisation sur la carte : Hauts-de-France Centre pénitentiaire de Vendin-le-Vieil Géol...

 

أرنولد موهرن (بالهولندية: Arnold Johannes Hyacinthus Mühren)‏  معلومات شخصية الميلاد 2 يونيو 1951 (العمر 73 سنة) مركز اللعب لاعب وسط الجنسية هولندا معلومات النادي النادي الحالي أياكس أمستردام (youth coach) المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1970–1971 فولندام 26 (2) 1971–1974 أياكس أمستردام 62 (16) 1974–1978...

 

.mr

.mr البلد موريتانيا  الموقع الموقع الرسمي  تعديل مصدري - تعديل   mr. هو امتداد خاص بالعناوين الإلكترونية نطاق للمواقع التي تنتمي إلى موريتانيا.[1][2] مراجع ^ النطاق الأعلى في ترميز الدولة (بالإنجليزية). ORSN [الإنجليزية]. Archived from the original on 2019-05-07. Retrieved 2017-08-07. ^ النطاق ا�...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Loophole album – news · newspapers · books · scholar · JSTOR (March 2014) (Learn how and when to remove this message) 2003 studio album by Sketch ShowLoopholeStudio album by Sketch ShowReleasedNovember 27, 2003 (2003-11-27)GenreElectronica, Glitch Pop...

 

1975 Royal Nepal Airlines Pilatus PC-6 Porter crashA Pilatus PC-6 Porter, similar to the aircraft involved in the accidentAccidentDate31 March 1975SummaryControlled flight into terrainSiteBoudhanath, Kathmandu Nepal[1]AircraftAircraft typePilatus PC-6 PorterOperatorRoyal Nepal AirlinesRegistration9N-AAZFlight originTribhuvan International Airport, Kathmandu, NepalDestinationPhaplu Airport, Phaplu, NepalPassengers4Crew1Survivors0 On 31 March 1975, a Pilatus PC-6 Porter (registrati...