Minimax theorem

In the mathematical area of game theory and of convex optimization, a minimax theorem is a theorem that claims that

under certain conditions on the sets and and on the function .[1] It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928,[2] which is considered the starting point of game theory. Von Neumann is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved".[3] Since then, several generalizations and alternative versions of von Neumann's original theorem have appeared in the literature.[4][5]

Bilinear functions and zero-sum games

Von Neumann's original theorem[2] was motivated by game theory and applies to the case where

  • and are standard simplexes: and , and
  • is a linear function in both of its arguments (that is, is bilinear) and therefore can be written for a finite matrix , or equivalently as .

Under these assumptions, von Neumann proved that

In the context of two-player zero-sum games, the sets and correspond to the strategy sets of the first and second player, respectively, which consist of lotteries over their actions (so-called mixed strategies), and their payoffs are defined by the payoff matrix . The function encodes the expected value of the payoff to the first player when the first player plays the strategy and the second player plays the strategy .

Concave-convex functions

The function f(x, y) = x2y2 is concave-convex.

Von Neumann's minimax theorem can be generalized to domains that are compact and convex, and to functions that are concave in their first argument and convex in their second argument (known as concave-convex functions). Formally, let and be compact convex sets. If is a continuous function that is concave-convex, i.e.

is concave for every fixed , and
is convex for every fixed .

Then we have that

Sion's minimax theorem

Sion's minimax theorem is a generalization of von Neumann's minimax theorem due to Maurice Sion,[6] relaxing the requirement that It states:[6][7]

Let be a convex subset of a linear topological space and let be a compact convex subset of a linear topological space. If is a real-valued function on with

upper semicontinuous and quasi-concave on , for every fixed , and
lower semicontinuous and quasi-convex on , for every fixed .

Then we have that

See also

References

  1. ^ Simons, Stephen (1995), Du, Ding-Zhu; Pardalos, Panos M. (eds.), "Minimax Theorems and Their Proofs", Minimax and Applications, Nonconvex Optimization and Its Applications, vol. 4, Boston, MA: Springer US, pp. 1–23, doi:10.1007/978-1-4613-3557-3_1, ISBN 978-1-4613-3557-3, retrieved 2024-10-27
  2. ^ a b Von Neumann, J. (1928). "Zur Theorie der Gesellschaftsspiele". Math. Ann. 100: 295–320. doi:10.1007/BF01448847. S2CID 122961988.
  3. ^ John L Casti (1996). Five golden rules: great theories of 20th-century mathematics – and why they matter. New York: Wiley-Interscience. p. 19. ISBN 978-0-471-00261-1.
  4. ^ Du, Ding-Zhu; Pardalos, Panos M., eds. (1995). Minimax and Applications. Boston, MA: Springer US. ISBN 9781461335573.
  5. ^ Brandt, Felix; Brill, Markus; Suksompong, Warut (2016). "An ordinal minimax theorem". Games and Economic Behavior. 95: 107–112. arXiv:1412.4198. doi:10.1016/j.geb.2015.12.010. S2CID 360407.
  6. ^ a b Sion, Maurice (1958). "On general minimax theorems". Pacific Journal of Mathematics. 8 (1): 171–176. doi:10.2140/pjm.1958.8.171. MR 0097026. Zbl 0081.11502.
  7. ^ Komiya, Hidetoshi (1988). "Elementary proof for Sion's minimax theorem". Kodai Mathematical Journal. 11 (1): 5–7. doi:10.2996/kmj/1138038812. MR 0930413. Zbl 0646.49004.


Read other articles:

Berikut adalah Daftar perguruan tinggi swasta di Jawa Timur, yang pembinaannya berada di bawah Kementerian Pendidikan dan Kebudayaan Republik Indonesia dan Perguruan Tinggi Swasta Keagamaan, yang pembinaannya berada di bawah Kementerian Agama. Daftar ini tidak termasuk Perguruan Tinggi Kedinasan yang pembinaannya berada dibawah masing-masing kementerian/lembaga. lbsPerguruan tinggi di Jawa TimurBlitarNegeri AKN Swasta Universitas Islam Balitar UNU JemberNegeri Unej UIN KHAS Swasta UIJ UMJ Uni...

 

Pemandangan kota Howrah Howrah merupakan sebuah kota di India. Kota ini letaknya di bagian timur. Tepatnya di negara bagian Benggala Barat. Pada tahun 2001, kota ini memiliki jumlah penduduk sebesar 1.007.532 jiwa dan memiliki luas wilayah 51,74 km². Kota ini memiliki jumlah penduduk sebanyak 19.496 km². Demografi Agama di kota Howrah (2011)[1]   Hindu (82.72%)  Islam (15.25%)  Jainisme (0.75%)  Kristen (0.34%)  Sikhisme (0...

 

العلاقات الإماراتية الكولومبية الإمارات العربية المتحدة كولومبيا   الإمارات العربية المتحدة   كولومبيا تعديل مصدري - تعديل   العلاقات الإماراتية الكولومبية هي العلاقات الثنائية التي تجمع بين الإمارات العربية المتحدة وكولومبيا.[1][2][3][4][5]...

فابيو غروسو (بالإيطالية: Fabio Grosso)‏  معلومات شخصية الاسم الكامل فابيو غروسو الميلاد 28 نوفمبر 1977 (العمر 46 سنة)روما الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب الظهير الأيسر الجنسية إيطاليا  معلومات النادي النادي الحالي فروسينوني (مدرب) مسيرة الشباب سنوات فريق 1998-1994 ريناتو ...

 

Ne doit pas être confondu avec Marie Walewska (film) ou Marie-Anne Walewska. Marie WalewskaMaria Łączyńska, comtesse Walewska.Titre de noblesseNobile (en)BiographieNaissance 7 décembre 1786Kiernozia ( République des Deux Nations)Décès 11 décembre 1817 (à 31 ans)Ancien 2e arrondissement de Paris ( Royaume de France)Sépulture Cimetière du Père-Lachaise (depuis le 11 décembre 1817), Kiernozia (depuis 1818)Nom dans la langue maternelle Maria WalewskaNationalités républi...

 

المدرسة الخسروية المدرسة الخسروية إحداثيات 36°11′49″N 37°09′38″E / 36.196944°N 37.160694°E / 36.196944; 37.160694 معلومات عامة القرية أو المدينة حلب الدولة سوريا سنة التأسيس 1547  تاريخ بدء البناء 951 هــ الموافق 1547م المواصفات عدد المآذن 1 عدد القباب 1 التصميم والإنشاء النمط المعماري ...

العلاقات الفيجية الكوبية فيجي كوبا   فيجي   كوبا تعديل مصدري - تعديل   العلاقات الفيجية الكوبية هي العلاقات الثنائية التي تجمع بين فيجي وكوبا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة فيجي كوبا المساحة (كم2...

 

Major tectonic plate which includes most of South America and a large part of the south Atlantic This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: South American Plate – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this template message) South American PlateTypeMajo...

 

Laju reaksi cenderung meningkat dengan fenomena konsentrasi yang dijelaskan oleh teori tumbukan Teori tumbukan adalah suatu teori yang diusulkan secara independen oleh Max Trautz pada tahun 1916[1] dan William Lewis pada tahun 1918, yang secara kualitatif menjelaskan bagaimana reaksi kimia terjadi dan bagaimana laju reaksi berbeda bagi reaksi yang berbeda pula.[2] Teori tumbukan menyatakan bahwa ketika partikel reaktan yang sesuai saling bertumbukan, hanya persentase tertentu ...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

Ryan Lienhart DahlDahl pada tahun 2010Lahir1981 (umur 42–43)San Diego, California, Amerika SerikatPendidikanUC San DiegoUniversity of RochesterDikenal atasNode.js dan Deno Ryan Lienhart Dahl adalah seorang pemrogram Amerika kelahiran tahun 1981. Ryan Dahl dikenal sebagai perancang awal perangkat lunak Node.js dan Deno.

 

English football manager and former player (born 1964) John Askey Askey as manager of York City in 2022Personal informationFull name John Colin AskeyDate of birth (1964-11-04) 4 November 1964 (age 59)Place of birth Stoke-on-Trent, EnglandHeight 6 ft 0 in (1.83 m)[1]Position(s) Winger, strikerYouth career1979–1982 Port ValeSenior career*Years Team Apps (Gls)1982–1983 Port Vale 0 (0)1983–1984 Milton United 1984–2003 Macclesfield Town 511 (109)Total 511 (109)I...

Neighbourhood in Montreal, Quebec, CanadaChinatown Quartier chinoisNeighbourhoodThe paifang on Saint Laurent BoulevardChinatownLocation of Chinatown in MontrealCoordinates: 45°30′27″N 73°33′39″W / 45.50759°N 73.5608°W / 45.50759; -73.5608CountryCanadaProvinceQuebecCityMontrealBoroughVille-MarieEstablishedEarly 1890s[1]Elevation70 ft (20 m)Postal CodeH2ZArea code(s)514, 438 Chinatown in Montreal (French: Quartier chinois de Montréal; simpl...

 

بينسديل   الإحداثيات 46°20′03″N 114°13′22″W / 46.334166666667°N 114.22277777778°W / 46.334166666667; -114.22277777778   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة رافالي  خصائص جغرافية  المساحة 3.356798 كيلومتر مربع3.357539 كيلومتر مربع (1 أبريل 2010)  ارتفاع 12...

 

Michał KlepfiszBornApril 17, 1913Warsaw, Congress PolandDiedApril 20, 1943(1943-04-20) (aged 30)Warsaw, Nazi occupied PolandPlace of burialOkopowa Street Jewish CemeteryAllegiancePolish resistanceService/branch ŻOBBattles/warsWorld War II Warsaw Ghetto Uprising  † AwardsVirtuti Militari Klepfisz's cenotaph Michał Klepfisz (Warsaw, 17 April 1913[1] – 20 April 1943, Warsaw)[2] was a chemical engineer, activist for the Bund, and member of the Jewish Morgenste...

Genre of Jamaican popular music This article is about the genre of music. For other uses, see Dance hall (disambiguation). DancehallStylistic originsReggaedubtoastingskarocksteadyCultural originsLate 1970s Jamaica, especially KingstonDerivative formsReggaetondembowafroswingSubgenresTrap DancehallTrinibadFusion genresReggae fusionOldschool jungleTropical house[1]Tropical pop[2][3] Dancehall is a genre of Jamaican popular music that originated in the late 1970s.[4 ...

 

Disambiguazione – Se stai cercando il processo di solubilizzazione di una specie chimica, vedi Solvatazione. Questa voce sull'argomento processi industriali è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. La solubilizzazione è il trattamento termico riservato agli acciai austenitici (acciaio inossidabile e duplex) (il processo di solubilizzazione è applicato in forme leggermente diverse ad altre leghe metalliche non ferrose come alluminio-rame). T...

 

BlindPoster filmSutradaraAhn Sang-HoonPemeranKim Ha-neulYoo Seung-hoTanggal rilis 22 Juli 2011 (2011-07-22) (Puchon) 11 Agustus 2011 (2011-08-11) (South Korea) Durasi111 menitNegaraTemplat:Film South KoreaBahasaKorea Blind (Hangul: 블라인드; RR: Beulraindeu) adalah film Korea Selatan. Pemeran Kim Ha-neul ... Min Soo-ah Yoo Seung-ho ... Kwon Gi-seob Jo Hee-bong ... Detektif Jo Pranala luar http://www.blind2011.co.kr/[pranala nonaktif permanen]...

Location of Ille-et-Vilaine in France Following is a list of senators of Ille-et-Vilaine, people who have represented the department of Ille-et-Vilaine in the Senate of France. Third Republic Senators for Ille-et-Vilaine under the French Third Republic were:[1] Robert Bellanger (1933–1941) Eugène Brager de La Ville-Moysan (1904–1933) Alphonse de Callac (1888–1893) Paul Garnier (1920–1933) Georges Garreau (1897–1906) Alphonse Gasnier-Duparc (1932–1941) Louis Grivart (1876...

 

Statutory head of the United States Supreme Court Police Not to be confused with United States Marshals Service. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Marshal of the United States Supreme Court – news · newspapers · books · scholar · JSTOR (May 2017) (Learn how and when to remove this message) Mars...