Middle Eocene Climatic Optimum

The Middle Eocene Climatic Optimum (MECO), also called the Middle Eocene Thermal Maximum (METM),[1] was a period of very warm climate that occurred during the Bartonian, from around 40.5 to 40.0 Ma.[2] It marked a notable reversal of the overall trend of global cooling that characterised the Middle and Late Eocene.[1]

Duration

The length of time that the MECO spanned is disputed, although it is known to have lasted from around 40.5 to 40.0 Ma. Depending on location and methodology, the event's duration has been variously estimated at 300,[3] 500,[2] 600,[4] and 750 kyr.[5]

Climate

The MECO was globally synchronous and observed in both marine and terrestrial sequences.[6] The global mean surface temperature during the MECO was about 23.1 °C.[1] In the Tethys Ocean, sea surface temperatures (SSTs) have been estimated at 32-36 °C.[7] Water temperatures off what is now Liguria rose by about 4-6 °C,[8] while the seas off southwestern Balkanatolia warmed by 2-5 °C.[9] The northwestern Atlantic experienced a 3 °C increase in upper ocean temperatures.[10] In the southwestern Pacific, SSTs rose from an average of about 22 °C to 28 °C.[11] Deep ocean temperatures were about 9 °C at the peak of the MECO.[12] On the shallow shelf around Seymour Island, temperatures warmed by ~5 °C.[13] The North American continental interior warmed more pronouncedly, by 9 °C from 23 °C ± 3 °C to 32 °C ± 3 °C at the peak of the MECO, followed by a decline of 11 °C after the MECO.[14]

In Western North America, lakes became markedly less saline.[15] The Pyrenees became hotter and drier.[16] North-central Turkey, then part of Balkanatolia, was wet and warm.[17] Continental Asia was once thought to have experienced intense aridification during the MECO, though more recent research has shown that this took place after the MECO, when global average temperatures resumed dropping.[18]

Continental weathering increased with rising temperatures.[19] Marine biological productivity surged as enhanced hydrological cycling delivered more nutrients to the oceans.[20] Extensive eutrophication is recorded from the Tethys,[21] North Atlantic,[22] South Atlantic,[23] and Southern Oceans.[24]

A decline in seawater oxygen content occurred during the MECO in the Tethys Ocean.[25][21][7] Dysoxic conditions in the Tethys lasted for about 400-500 kyr according to geochemical study of the Alano site in northeastern Italy.[26] Evidence from the Southern Ocean indicates deep water deoxygenation developed in this marine region too.[27] Organic carbon burial rates skyrocketed in these oxygen-poor waters, which may have acted as a negative feedback that helped restore global temperatures to their pre-MECO state after the warming ended.[28] However, deoxygenation was not globally ubiquitous; South Atlantic sites such as South Atlantic Ocean Drilling Program Site 702 show no evidence of any shift towards dysoxic conditions.[3] The enhanced formation of glauconites in some studied sections across the MECO is believed to in part reflect the decrease in marine oxygen content, as this disinhibited the mobility of iron and its ability to be incorporated to make glauconite.[29]

There is evidence of ocean acidification occurring during the MECO in the form of major declines in carbonate accumulation throughout the ocean at depths of greater than three kilometres.[2] Acidification affected the entire water column, extending as far as the abyssal zone.[30]

Causes

The MECO was marked by a notable rise in atmospheric carbon dioxide concentrations.[2] At their peak, pCO2 values may have reached as high as 4,000 ppm.[31] One possible cause of this rise in pCO2 was the collision of India with Eurasia and formation of the Himalayas that was occurring at this time, which would have metamorphically liberated large quantities of the greenhouse gas, although the timing of metamorphic carbon release is poorly resolved. Enhanced rates of seafloor spreading and metamorphic decarbonation reactions around the region between Australia and Antarctica, combined with increased volcanic activity in this region, may also have been a source of the carbon injection into the atmosphere.[4] Yet another hypothesis implicates increased continental arc volcanism in what are now Azerbaijan and Iran for this surge in atmospheric greenhouse gas levels.[32] Some analyses have also found that the rise in atmospheric pCO2 was more limited than previous studies have suggested, instead proposing that the observed warming was caused by a much greater sensitivity of the Earth's climate to changes in pCO2 relative to today.[33]

Diminished negative feedback of silicate weathering may have occurred around the time of the MECO's onset and allowed volcanically released carbon dioxide to persist in the atmosphere for longer. This may have come about as a result of continental rocks having become less weatherable during the very warm Early Eocene and Early Middle Eocene; by the time of the MECO, few areas of silicate rock potent enough to absorb significant amounts of carbon dioxide would have remained.[34] The MECO warmth may have been sustained through a further inhibition of silicate weathering following the onset of warming via enhanced clay formation.[35]

Milankovitch cycles have been suggested to have played a role in triggering MECO warmth. The MECO coincided with a minimum in the 2.4 Myr eccentricity cycle that occurred around 40.2 Ma.[36] This 2.4 Myr eccentricity minimum coincided with a minimum in the 400 kyr eccentricity cycle; the simultaneous occurrence of these eccentricity minima likely fomented the conditions enabling the MECO's persistent global warmth.[37]

Biotic effects

Planktonic foraminifera underwent a major biotic turnover; acarinids were greatly reduced in diversity and morozovellids went extinct.[38] The range of the planktonic foraminifer Orbulinoides beckmanni, a species well adapted to warm waters, expanded to higher latitudes during the MECO.[5][39] Benthic foraminifera exhibited a decline due to enhanced respiration of pelagic heterotrophs, limiting the amount of organic matter making its way to the ocean depths.[40][41] Large benthic foraminifera, however, thrived,[42] which contributed to the large increase in platform carbonate deposition observed across the warming event.[43] Silicoflagellates, diatoms, and radiolarians flourished as silicic acid was supplied to the oceans in greater quantities than before.[44] The increase in iron transport into the oceans, causing populations of magnetotactic bacteria to grow.[45] The MECO coincided with the replacement of lamniform elasmobranchs with carcharhinids in the medium to large predator guild.[46]

In North America, the MECO marked the high point of the Middle-Late Eocene mammalian assemblage.[47] MECO warmth catalysed the faunal turnover leading to the rise of crown-group carnivorans to prominence in the continent's terrestrial ecosystems.[48][49]

In Balkanatolia, lower montane forests and warm, humid lowland rainforests were the dominant biomes in what is now the middle Black Sea region of northern Anatolia.[50]

The plant diversity of Patagonia increased by 40% during the MECO, largely due to the southward migration of neotropical plants that mixed with the established temperate Gondwanan flora.[51] Neotropical lineages that today only occupy the tropics reached the southernmost end of South America.[52] Nourished by abundant carbon dioxide and a favourable temperature, this highly diverse flora reverted to pre-MECO levels of biodiversity after the hothouse concluded.[51]

Coastal southeastern Australia was dominated by mesothermal rainforests, although whether or not this flora was already present before the MECO remains up for debate.[53]

See also

References

  1. ^ a b c Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (1 April 2021). "Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years". Earth-Science Reviews. 215: 103503. Bibcode:2021ESRv..21503503S. doi:10.1016/j.earscirev.2021.103503. S2CID 233579194. Retrieved 24 December 2023 – via Elsevier Science Direct.
  2. ^ a b c d Bohaty, Steven M.; Zachos, James C.; Florindo, Fabio; Delaney, Margaret L. (9 May 2009). "Coupled greenhouse warming and deep-sea acidification in the middle Eocene". Paleoceanography and Paleoclimatology. 24 (2). Bibcode:2009PalOc..24.2207B. doi:10.1029/2008PA001676. ISSN 0883-8305. Retrieved 24 December 2023.
  3. ^ a b Rivero-Cuesta, L.; Westerhold, T.; Agnini, C.; Dallanave, E.; Wilkens, R. H.; Alegret, L. (27 November 2019). "Paleoenvironmental Changes at ODP Site 702 (South Atlantic): Anatomy of the Middle Eocene Climatic Optimum". Paleoceanography and Paleoclimatology. 34 (12): 2047–2066. Bibcode:2019PaPa...34.2047R. doi:10.1029/2019PA003806. hdl:11577/3322443. ISSN 2572-4517.
  4. ^ a b Bohaty, Steven M.; Zachos, James C. (1 November 2003). "Significant Southern Ocean warming event in the late middle Eocene". Geology. 31 (11): 1017. Bibcode:2003Geo....31.1017B. doi:10.1130/G19800.1. ISSN 0091-7613. Retrieved 24 December 2023.
  5. ^ a b Edgar, K. M.; Wilson, P. A.; Sexton, P. F.; Gibbs, S. J.; Roberts, A. P.; Norris, R. D. (20 November 2010). "New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes". Palaeogeography, Palaeoclimatology, Palaeoecology. 297 (3–4): 670–682. Bibcode:2010PPP...297..670E. doi:10.1016/j.palaeo.2010.09.016. hdl:1983/285f87bc-c4d8-4f71-828b-3d1e74eaea75. Retrieved 24 December 2023 – via Elsevier Science Direct.
  6. ^ Shi, Juye; Jin, Zhijun; Liu, Quanyou; Zhang, Rui; Huang, Zhenkai (March 2019). "Cyclostratigraphy and astronomical tuning of the middle eocene terrestrial successions in the Bohai Bay Basin, Eastern China". Global and Planetary Change. 174: 115–126. Bibcode:2019GPC...174..115S. doi:10.1016/j.gloplacha.2019.01.001. S2CID 135265513. Retrieved 24 December 2023 – via Elsevier Science Direct.
  7. ^ a b Cramwinckel, Margot J.; Van der Ploeg, Robin; Van Helmond, Niels A. G. M.; Waarlo, Niels; Agnini, Claudia; Bijl, Peter K.; Van der Boon, Annique; Brinkhuis, Henk; Frieling, Joost; Krijgsman, Wout; Mather, Tamsin A.; Middelburg, Jack J.; Peterse, Francien; Slomp, Caroline P.; Sluijs, Appy (1 September 2022). "Deoxygenation and organic carbon sequestration in the Tethyan realm associated with the middle Eocene climatic optimum". Geological Society of America Bulletin. 135 (5–6): 1280–1296. doi:10.1130/B36280.1. S2CID 252033074.
  8. ^ Gandolfi, Antonella; Giraldo-GóMez, Victor Manuel; Luciani, Valeria; Piazza, Michele; Adatte, Thierry; Arena, Luca; Bomou, Brahimsamba; Fornaciari, Eliana; Frijia, Gianluca; Kocsis, LáSzló; Briguglio, Antonino (17 October 2023). "The Middle Eocene Climatic Optimum (Meco) Impact on the Benthic and Planktic Foraminiferal Resilience from a Shallow-Water Sedimentary Record". Rivista Italiana di Paleontologia e Stratigrafia. 129 (3). doi:10.54103/2039-4942/20154. hdl:11392/2534810. ISSN 2039-4942. Retrieved 5 July 2024.
  9. ^ Ibilioglu, Deniz; Koroglu, Fatih (2024). "Middle Eocene Climatic Optimum (MECO): The first record based on planktonic foraminifera and stable isotopes from SW Anatolia/Turkiye". Stratigraphy. 21 (1): 17–50. doi:10.29041/strat.21.1.02. Retrieved 5 July 2024.
  10. ^ Arimoto, Jun; Nishi, Hiroshi; Kuroyanagi, Azumi; Takashima, Reishi; Matsui, Hiroki; Ikehara, Minoru (October 2020). "Changes in upper ocean hydrography and productivity across the Middle Eocene Climatic Optimum: Local insights and global implications from the Northwest Atlantic". Global and Planetary Change. 193: 103258. Bibcode:2020GPC...19303258A. doi:10.1016/j.gloplacha.2020.103258. Retrieved 5 July 2024 – via Elsevier Science Direct.
  11. ^ Bijl, Peter K.; Houben, Alexander J. P.; Schouten, Stefan; Bohaty, Steven M.; Sluijs, Appy; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk (5 November 2010). "Transient Middle Eocene Atmospheric CO 2 and Temperature Variations". Science. 330 (6005): 819–821. doi:10.1126/science.1193654. hdl:1874/385803. ISSN 0036-8075. PMID 21051636. S2CID 206528256. Retrieved 10 January 2024.
  12. ^ Cramwinckel, Margot J.; Huber, Matthew; Kocken, Ilja J.; Agnini, Claudia; Bijl, Peter K.; Bohaty, Steven M.; Frieling, Joost; Goldner, Aaron; Hilgen, Frederik J.; Kip, Elizabeth L.; Peterse, Francien; van der Ploeg, Robin; Röhl, Ursula; Schouten, Stefan; Sluijs, Appy (2 July 2018). "Synchronous tropical and polar temperature evolution in the Eocene". Nature. 559 (7714): 382–386. Bibcode:2018Natur.559..382C. doi:10.1038/s41586-018-0272-2. hdl:1874/366626. ISSN 1476-4687. PMID 29967546. S2CID 49556944. Retrieved 10 January 2024.
  13. ^ Ivany, L. C.; Lohmann, K. C.; Hasiuk, F.; Blake, D. B.; Glass, A.; Aronson, R. B.; Moody, R. M. (1 May 2008). "Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica". Geological Society of America Bulletin. 120 (5–6): 659–678. Bibcode:2008GSAB..120..659I. doi:10.1130/B26269.1. ISSN 0016-7606. Retrieved 2 June 2024 – via GeoScienceWorld.
  14. ^ Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page (15 September 2016). "Rapid Middle Eocene temperature change in western North America". Earth and Planetary Science Letters. 450: 132–139. Bibcode:2016E&PSL.450..132M. doi:10.1016/j.epsl.2016.05.053. Retrieved 2 June 2024 – via Elsevier Science Direct.
  15. ^ Mulch, Andreas; Chamberlain, C. P.; Cosca, Michael A.; Teyssier, Christian; Methner, Katharina; Hren, Michael T.; Graham, Stephan A. (April 2015). "Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO)". American Journal of Science. 315 (4): 317–336. Bibcode:2015AmJS..315..317M. doi:10.2475/04.2015.02. S2CID 129918182. Retrieved 18 May 2023.
  16. ^ Sharma, Nikhil; Spangenberg, Jorge E.; Adatte, Thierry; Vennemann, Torsten; Kocsis, László; Vérité, Jean; Valero, Luis; Castelltort, Sébastien (15 April 2024). "Middle Eocene Climatic Optimum (MECO) and its imprint in the continental Escanilla Formation, Spain". Climate of the Past. 20 (4): 935–949. Bibcode:2024CliPa..20..935S. doi:10.5194/cp-20-935-2024. ISSN 1814-9332. Retrieved 22 August 2024.
  17. ^ Akkemik, Ünal; Toprak, Özlem; Mantzouka, Dimitra (17 July 2024). "New fossil woods from the middle Eocene climate optimum of north-central Turkey". Palaeoworld. doi:10.1016/j.palwor.2024.06.005. Retrieved 22 August 2024 – via Elsevier Science Direct.
  18. ^ Bosboom, Roderic E.; Abels, Hemmo A.; Hoorn, Carina; van den Berg, Bas C. J.; Guo, ZhaoJie; Dupont-Nivet, Guillaume (1 March 2014). "Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO)". Earth and Planetary Science Letters. 389: 34–42. Bibcode:2014E&PSL.389...34B. doi:10.1016/j.epsl.2013.12.014. ISSN 0012-821X. Retrieved 24 December 2023 – via Elsevier Science Direct.
  19. ^ Wang, Wei; Colin, Christophe; Xu, Zhaokai; Lim, Dhongil; Wan, Shiming; Li, Tiegang (October 2022). "Tectonic and climatic controls on sediment transport to the Southeast Indian Ocean during the Eocene: New insights from IODP Site U1514". Global and Planetary Change. 217: 103956. doi:10.1016/j.gloplacha.2022.103956. Retrieved 6 September 2024 – via Elsevier Science Direct.
  20. ^ Messaoud, Jihede Haj; Thibault, Nicolas; Bomou, Brahimsamba; Adatte, Thierry; Monkenbusch, Johannes; Spangenberg, Jorge E.; Aljahdali, Mohammed H.; Yaich, Chokri (1 November 2021). "Integrated stratigraphy of the middle-upper Eocene Souar Formation (Tunisian dorsal): Implications for the Middle Eocene Climatic Optimum (MECO) in the SW Neo-Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 581: 110639. doi:10.1016/j.palaeo.2021.110639. Retrieved 23 October 2024 – via Elsevier Science Direct.
  21. ^ a b Spofforth, D. J. A.; Agnini, C.; Pälike, H.; Rio, D.; Fornaciari, E.; Giusberi, L.; Luciani, V.; Lanci, L.; Muttoni, G. (24 August 2010). "Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys". Paleoceanography and Paleoclimatology. 25 (3): 1–11. Bibcode:2010PalOc..25.3210S. doi:10.1029/2009PA001738. hdl:11577/2447521.
  22. ^ Moebius, Iris; Friedrich, Oliver; Edgar, Kirsty M.; Sexton, Philip F. (14 July 2015). "Episodes of intensified biological productivity in the subtropical Atlantic Ocean during the termination of the Middle Eocene Climatic Optimum (MECO): Intensified Productivity During the MECO". Paleoceanography and Paleoclimatology. 30 (8): 1041–1058. doi:10.1002/2014PA002673. hdl:1983/f0aa34a6-eb00-465e-a7c7-6e718cedf776. Retrieved 2 June 2024.
  23. ^ Renaudie, Johan; Danelian, Taniel; Saint Martin, Simona; Le Callonnec, Laurence; Tribovillard, Nicolas (15 February 2010). "Siliceous phytoplankton response to a Middle Eocene warming event recorded in the tropical Atlantic (Demerara Rise, ODP Site 1260A)". Palaeogeography, Palaeoclimatology, Palaeoecology. 286 (3–4): 121–134. Bibcode:2010PPP...286..121R. doi:10.1016/j.palaeo.2009.12.004. Retrieved 2 June 2024 – via Elsevier Science Direct.
  24. ^ Witkowski, Jakub; Bohaty, Steven M.; McCartney, Kevin; Harwood, David M. (1 April 2012). "Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749". Palaeogeography, Palaeoclimatology, Palaeoecology. 326–328: 78–94. Bibcode:2012PPP...326...78W. doi:10.1016/j.palaeo.2012.02.006. Retrieved 2 June 2024 – via Elsevier Science Direct.
  25. ^ D’Onofrio, Roberta; Zaky, Amr S.; Frontalini, Fabrizio; Luciani, Valeria; Catanzariti, Rita; Francescangeli, Fabio; Giorgioni, Martino; Coccioni, Rodolfo; Özcan, Ercan; Jovane, Luigi (30 November 2021). "Impact of the Middle Eocene Climatic Optimum (MECO) on Foraminiferal and Calcareous Nannofossil Assemblages in the Neo-Tethyan Baskil Section (Eastern Turkey): Paleoenvironmental and Paleoclimatic Reconstructions". Applied Sciences. 11 (23): 11339. doi:10.3390/app112311339. ISSN 2076-3417.
  26. ^ Boscolo Galazzo, F.; Giusberti, L.; Luciani, V.; Thomas, E. (15 May 2013). "Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section (NE Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 378: 22–35. Bibcode:2013PPP...378...22B. doi:10.1016/j.palaeo.2013.03.018. ISSN 0031-0182. Retrieved 24 December 2023.
  27. ^ Moebius, Iris; Friedrich, Oliver; Scher, Howie D. (1 July 2014). "Changes in Southern Ocean bottom water environments associated with the Middle Eocene Climatic Optimum (MECO)". Palaeogeography, Palaeoclimatology, Palaeoecology. 405: 16–27. Bibcode:2014PPP...405...16M. doi:10.1016/j.palaeo.2014.04.004. Retrieved 24 December 2023 – via Elsevier Science Direct.
  28. ^ Luciani, Valeria; Giusberti, Luca; Agnini, Claudia; Fornaciari, Eliana; Rio, Domenico; Spofforth, David J. A.; Pälike, Heiko (1 June 2016). "Ecological and evolutionary response of Tethyan planktonic foraminifera to the middle Eocene climatic optimum (MECO) from the Alano section (NE Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 292 (1): 82–95. doi:10.1016/j.palaeo.2010.03.029. ISSN 0031-0182. Retrieved 24 December 2023 – via Elsevier Science Direct.
  29. ^ Roy Choudhury, Tathagata; Khanolkar, Sonal; Banerjee, Santanu (July 2022). "Glauconite authigenesis during the warm climatic events of Paleogene: Case studies from shallow marine sections of Western India". Global and Planetary Change. 214: 103857. doi:10.1016/j.gloplacha.2022.103857. Retrieved 6 September 2024 – via Elsevier Science Direct.
  30. ^ Cornaggia, Flaminia; Bernardini, Simone; Giorgioni, Martino; Silva, Gabriel L. X.; Nagy, André Istvan M.; Jovane, Luigi (21 April 2020). "Abyssal oceanic circulation and acidification during the Middle Eocene Climatic Optimum (MECO)". Scientific Reports. 10 (1): 6674. Bibcode:2020NatSR..10.6674C. doi:10.1038/s41598-020-63525-3. ISSN 2045-2322. PMC 7174310. PMID 32317709.
  31. ^ Pearson, Paul N. (5 November 2010). "Increased Atmospheric CO 2 During the Middle Eocene". Science. 330 (6005): 763–764. doi:10.1126/science.1197894. ISSN 0036-8075. PMID 21051620. S2CID 20253252. Retrieved 24 December 2023.
  32. ^ van der Boon, Annique; Kuiper, Klaudia F.; van der Ploeg, Robin; Cramwinckel, Margot J.; Honarmand, Maryam; Sluijs, Appy; Krijgsman, Wout (18 January 2021). "Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up". Climate of the Past. 17 (1): 229–239. Bibcode:2021CliPa..17..229V. doi:10.5194/cp-17-229-2021. ISSN 1814-9332. Retrieved 24 December 2023.
  33. ^ Henehan, Michael J.; Edgar, Kirsty M.; Foster, Gavin L.; Penman, Donald E.; Hull, Pincelli M.; Greenop, Rosanna; Anagnostou, Eleni; Pearson, Paul N. (9 March 2020). "Revisiting the Middle Eocene Climatic Optimum "Carbon Cycle Conundrum" With New Estimates of Atmospheric pCO 2 From Boron Isotopes". Paleoceanography and Paleoclimatology. 35 (6). doi:10.1029/2019PA003713. ISSN 2572-4517. Retrieved 23 October 2024.
  34. ^ van der Ploeg, Robin; Selby, David; Cramwinckel, Margot J.; Li, Yang; Bohaty, Steven M.; Middelburg, Jack J.; Sluijs, Appy (23 July 2018). "Middle Eocene greenhouse warming facilitated by diminished weathering feedback". Nature Communications. 9 (1): 2877. Bibcode:2018NatCo...9.2877V. doi:10.1038/s41467-018-05104-9. ISSN 2041-1723. PMC 6056486. PMID 30038400.
  35. ^ Krause, Alexander J.; Sluijs, Appy; van der Ploeg, Robin; Lenton, Timothy M.; Pogge von Strandmann, Philip A. E. (31 July 2023). "Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum". Nature Geoscience. 16 (8): 730–738. Bibcode:2023NatGe..16..730K. doi:10.1038/s41561-023-01234-y. ISSN 1752-0908. PMC 10409649. PMID 37564379.
  36. ^ Westerhold, Thomas; Röhl, Ursula (12 November 2013). "Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: Missing link found in the tropical western Atlantic". Geochemistry, Geophysics, Geosystems. 14 (11): 4811–4825. Bibcode:2013GGG....14.4811W. doi:10.1002/ggge.20293. ISSN 1525-2027. S2CID 130604287. Retrieved 24 December 2023.
  37. ^ Giorgioni, Martino; Jovane, Luigi; Rego, Eric S.; Rodelli, Daniel; Frontalini, Fabrizio; Coccioni, Rodolfo; Catanzariti, Rita; Özcan, Ercan (27 June 2019). "Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum". Scientific Reports. 9 (1): 9357. Bibcode:2019NatSR...9.9357G. doi:10.1038/s41598-019-45763-2. ISSN 2045-2322. PMC 6597698. PMID 31249387.
  38. ^ Jovane, L.; Florindo, F.; Coccioni, R.; Dinares-Turell, J.; Marsili, A.; Monechi, S.; Roberts, A. P.; Sprovieri, M. (1 March 2007). "The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Apennines, Italy". Geological Society of America Bulletin. 119 (3–4): 413–427. Bibcode:2007GSAB..119..413J. doi:10.1130/B25917.1. ISSN 0016-7606. Retrieved 24 December 2023.
  39. ^ Edgar, Kirsty M.; Bohaty, Steven M.; Coxall, Helen K.; Bown, Paul R.; Batenburg, Sietske J.; Lear, Caroline H.; Pearson, Paul N. (27 July 2020). "New composite bio- and isotope stratigraphies spanning the Middle Eocene Climatic Optimum at tropical ODP Site 865 in the Pacific Ocean". Journal of Micropalaeontology. 39 (2): 117–138. Bibcode:2020JMicP..39..117E. doi:10.5194/jm-39-117-2020. ISSN 2041-4978. Retrieved 5 July 2024.
  40. ^ Boscolo Galazzo, Flavia; Thomas, Ellen; Giusberti, Luca (1 January 2015). "Benthic foraminiferal response to the Middle Eocene Climatic Optimum (MECO) in the South-Eastern Atlantic (ODP Site 1263)". Palaeogeography, Palaeoclimatology, Palaeoecology. 417: 432–444. Bibcode:2015PPP...417..432B. doi:10.1016/j.palaeo.2014.10.004. Retrieved 19 November 2023.
  41. ^ Boscolo Galazzo, F.; Thomas, E.; Pagani, M.; Warren, C.; Luciani, V.; Giusberti, L. (6 November 2014). "The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge)". Paleoceanography and Paleoclimatology. 29 (12): 1143–1161. Bibcode:2014PalOc..29.1143B. doi:10.1002/2014PA002670. hdl:11577/3068900. ISSN 0883-8305.
  42. ^ Morabito, C.; Papazzoni, C. A.; Lehrmann, D. J.; Payne, J. L.; Al-Ramadan, K.; Morsilli, M. (1 March 2024). "Carbonate factory response through the MECO (Middle Eocene Climate Optimum) event: Insight from the Apulia Carbonate Platform, Gargano Promontory, Italy". Sedimentary Geology. 461: 106575. Bibcode:2024SedG..46106575M. doi:10.1016/j.sedgeo.2023.106575. hdl:11380/1352167.
  43. ^ Das, Mohuli; Dasgupta, Sudipta; Srivastava, Ayush; Rajkhowa, David; Banerjee, Santanu (1 June 2024). "Ichnological response to the Middle Eocene Climatic Optimum (MECO) in the Bartonian deposits of Kutch Basin, India". Palaeogeography, Palaeoclimatology, Palaeoecology. 643: 112183. doi:10.1016/j.palaeo.2024.112183. Retrieved 23 October 2024 – via Elsevier Science Direct.
  44. ^ Witkowski, Jakub; Bohaty, Steven M.; Edgar, Kirsty M.; Harwood, David M. (January 2014). "Rapid fluctuations in mid-latitude siliceous plankton production during the Middle Eocene Climatic Optimum (ODP Site 1051, western North Atlantic)". Marine Micropaleontology. 106: 110–129. Bibcode:2014MarMP.106..110W. doi:10.1016/j.marmicro.2014.01.001. Retrieved 22 August 2024 – via Elsevier Science Direct.
  45. ^ Savian, Jairo F.; Jovane, Luigi; Giorgioni, Martino; Iacoviello, Francesco; Rodelli, Daniel; Roberts, Andrew P.; Chang, Liao; Florindo, Fabio; Sprovieri, Mario (1 January 2016). "Environmental magnetic implications of magnetofossil occurrence during the Middle Eocene Climatic Optimum (MECO) in pelagic sediments from the equatorial Indian Ocean". Palaeogeography, Palaeoclimatology, Palaeoecology. 441: 212–222. doi:10.1016/j.palaeo.2015.06.029. Retrieved 23 October 2024 – via Elsevier Science Direct.
  46. ^ Adnet, Sylvain; Marivaux, Laurent; Cappetta, Henri; Charruault, Anne-Lise; Essid, El Mabrouk; Jiquel, Suzanne; Ammar, Hayet Khayati; Marandat, Bernard; Marzougui, Wissem; Merzeraud, Gilles; Temani, Rim; Vianey-Liaud, Monique; Tabuce, Rodolphe (2020). "Diversity and renewal of tropical elasmobranchs around the Middle Eocene Climatic Optimum (MECO) in North Africa: New data from the lagoonal deposits of Djebel el Kébar, Central Tunisia". Palaeontologia Electronica. doi:10.26879/1085. Retrieved 2 June 2024.
  47. ^ Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; De Renzi, Miquel; Palmqvist, Paul (17 January 2012). "Cenozoic climate change influences mammalian evolutionary dynamics". Proceedings of the National Academy of Sciences of the United States of America. 109 (3): 722–727. Bibcode:2012PNAS..109..722F. doi:10.1073/pnas.1110246108. ISSN 0027-8424. PMC 3271923. PMID 22203974.
  48. ^ Tomiya, Susumu; Morris, Zachary S. (15 May 2020). "Reidentification of Late Middle Eocene "Uintacyon" from the Galisteo Formation (New Mexico, U.s.a.) as an Early Beardog (Mammalia, Carnivora, Amphicyonidae)". Breviora. 567 (1): 1. doi:10.3099/0006-9698-567.1.1. ISSN 0006-9698.
  49. ^ Poust, Ashley W.; Barrett, Paul Z.; Tomiya, Susumu (12 October 2022). "An early nimravid from California and the rise of hypercarnivorous mammals after the middle Eocene climatic optimum". Biology Letters. 18 (10). doi:10.1098/rsbl.2022.0291. ISSN 1744-957X. PMC 9554728.
  50. ^ Akkemik, Ünal; Mantzouka, Dimitra; Tunç, Umut; Koçbulut, Fikret (February 2021). "The first paleoxylotomical evidence from the Mid-Eocene Climate Optimum from Turkey". Review of Palaeobotany and Palynology. 285: 104356. Bibcode:2021RPaPa.28504356A. doi:10.1016/j.revpalbo.2020.104356. Retrieved 5 July 2024 – via Elsevier Science Direct.
  51. ^ a b Fernández, Damián A.; Palazzesi, Luis; González Estebenet, M. Sol; Tellería, M. Cristina; Barreda, Viviana D. (9 February 2021). "Impact of mid Eocene greenhouse warming on America's southernmost floras". Communications Biology. 4 (1): 176. doi:10.1038/s42003-021-01701-5. hdl:11336/137904. ISSN 2399-3642. PMC 7873257. PMID 33564110.
  52. ^ Fernández, Damián A.; Santamarina, Patricio E.; Palazzesi, Luis; Tellería, María Cristina; Barreda, Viviana D. (December 2021). "Incursion of tropically-distributed plant taxa into high latitudes during the middle Eocene warming event: Evidence from the Río Turbio Fm, Santa Cruz, Argentina". Review of Palaeobotany and Palynology. 295: 104510. Bibcode:2021RPaPa.29504510F. doi:10.1016/j.revpalbo.2021.104510. Retrieved 2 June 2024 – via Elsevier Science Direct.
  53. ^ Cramwinckel, Margot J.; Woelders, Lineke; Huurdeman, Emiel P.; Peterse, Francien; Gallagher, Stephen J.; Pross, Jörg; Burgess, Catherine E.; Reichart, Gert-Jan; Sluijs, Appy; Bijl, Peter K. (1 September 2020). "Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry". Climate of the Past. 16 (5): 1667–1689. Bibcode:2020CliPa..16.1667C. doi:10.5194/cp-16-1667-2020. hdl:11343/242055. ISSN 1814-9332. Retrieved 5 July 2024.