Memetic algorithms represent one of the recent growing areas of research in evolutionary computation. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian evolutionary algorithms (EAs), Lamarckian EAs, cultural algorithms, or genetic local search.
Introduction
Inspired by both Darwinian principles of natural evolution and Dawkins' notion of a meme, the term memetic algorithm (MA) was introduced by Pablo Moscato in his technical report[2] in 1989 where he viewed MA as being close to a form of population-based hybrid genetic algorithm (GA) coupled with an individual learning procedure capable of performing local refinements. The metaphorical parallels, on the one hand, to Darwinian evolution and, on the other hand, between memes and domain specific (local search) heuristics are captured within memetic algorithms thus rendering a methodology that balances well between generality and problem specificity. This two-stage nature makes them a special case of dual-phase evolution.
In the context of complex optimization, many different instantiations of memetic algorithms have been reported across a wide range of application domains, in general, converging to high-quality solutions more efficiently than their conventional evolutionary counterparts.[3]
In general, using the ideas of memetics within a computational framework is called memetic computing or memetic computation (MC).[4][5] With MC, the traits of universal Darwinism are more appropriately captured. Viewed in this perspective, MA is a more constrained notion of MC. More specifically, MA covers one area of MC, in particular dealing with areas of evolutionary algorithms that marry other deterministic refinement techniques for solving optimization problems. MC extends the notion of memes to cover conceptual entities of knowledge-enhanced procedures or representations.
Theoretical Background
The no-free-lunch theorems of optimization and search[6][7] state that all optimization strategies are equally effective with respect to the set of all optimization problems. Conversely, this means that one can expect the following: The more efficiently an algorithm solves a problem or class of problems, the less general it is and the more problem-specific knowledge it builds on. This insight leads directly to the recommendation to complement generally applicable metaheuristics with application-specific methods or heuristics,[8] which fits well with the concept of MAs.
The development of MAs
1st generation
Pablo Moscato characterized an MA as follows: "Memetic algorithms are a marriage between a population-based global search and the heuristic local search made by each of the individuals. ... The mechanisms to do local search can be to reach a local optimum or to improve (regarding the objective cost function) up to a predetermined level." And he emphasizes "I am not constraining an MA to a genetic representation.".[9] This original definition of MA although encompasses characteristics of cultural evolution (in the form of local refinement) in the search cycle, it may not qualify as a true evolving system according to universal Darwinism, since all the core principles of inheritance/memetic transmission, variation, and selection are missing. This suggests why the term MA stirred up criticisms and controversies among researchers when first introduced.[2] The following pseudo code would correspond to this general definition of an MA:
Pseudo code
Procedure Memetic Algorithm
Initialize: Generate an initial population, evaluate the individuals and assign a quality value to them;
while Stopping conditions are not satisfied doEvolve a new population using stochastic search operators.
Evaluate all individuals in the population and assign a quality value to them.
Select the subset of individuals, , that should undergo the individual improvement procedure.
for each individual in doPerform individual learning using meme(s) with frequency or probability of , with an intensity of .Proceed with Lamarckian or Baldwinian learning.
end forend while
Lamarckian learning in this context means to update the chromosome according to the improved solution found by the individual learning step, while Baldwinian learning leaves the chromosome unchanged and uses only the improved fitness. This pseudo code leaves open which steps are based on the fitness of the individuals and which are not. In question are the evolving of the new population and the selection of .
Since most MA implementations are based on EAs, the pseudo code of a corresponding representative of the first generation is also given here, following Krasnogor:[10]
Pseudo code
Procedure Memetic Algorithm Based on an EA
Initialization:; // Initialization of the generation counter
Randomly generate an initial population ;
Compute the fitness ;
while Stopping conditions are not satisfied doSelection: Accordingly to choose a subset of and store it in ;Offspring: Recombine and mutate individuals and store them in ;Learning: Improve by local search or heuristic ;
Evaluation: Compute the fitness ;if Lamarckian learning thenUpdate chromosome of according to improvement ;fiNew generation:Generate by selecting some individuals from and ;; // Increment the generation counter
end whileReturn best individual as result;
There are some alternatives for this MA scheme. For example:
All or some of the initial individuals may be improved by the meme(s).
The parents may be locally improved instead of the offspring.
Instead of all offspring, only a randomly selected or fitness-dependent fraction may undergo local improvement. The latter requires the evaluation of the offspring in prior to the Learning step.
2nd generation
Multi-meme,[11]hyper-heuristic[12][13] and meta-Lamarckian MA[14][15] are referred to as second generation MA exhibiting the principles of memetic transmission and selection in their design. In Multi-meme MA, the memetic material is encoded as part of the genotype. Subsequently, the decoded meme of each respective individual/chromosome is then used to perform a local refinement. The memetic material is then transmitted through a simple inheritance mechanism from parent to offspring(s). On the other hand, in hyper-heuristic and meta-Lamarckian MA, the pool
of candidate memes considered will compete, based on their past merits in generating local improvements through a reward mechanism, deciding on which meme to be selected to proceed for future local refinements. Memes with a higher reward have a greater chance of continuing to be used. For a review on second generation MA; i.e., MA considering multiple individual learning methods within an evolutionary system, the reader is referred to.[16]
3rd generation
Co-evolution[17] and self-generating MAs[18] may be regarded as 3rd generation MA where all three principles satisfying the definitions of a basic evolving system have been considered. In contrast to 2nd generation MA which assumes that the memes to be used are known a priori, 3rd generation MA utilizes a rule-based local search to supplement candidate solutions within the evolutionary system, thus capturing regularly repeated features or patterns in the problem space.
Some design notes
The learning method/meme used has a significant impact on the improvement results, so care must be taken in deciding which meme or memes to use for a particular optimization problem.[12][16][19] The frequency and intensity of individual learning directly define the degree of evolution (exploration) against individual learning (exploitation) in the MA search, for a given fixed limited computational budget. Clearly, a more intense individual learning provides greater chance of convergence to the local optima but limits the amount of evolution that may be expended without incurring excessive computational resources. Therefore, care should be taken when setting these two parameters to balance the computational budget available in achieving maximum search performance. When only a portion of the population individuals undergo learning, the issue of which subset of individuals to improve need to be considered to maximize the utility of MA search. Last but not least, it has to be decided whether the respective individual should be changed by the learning success (Lamarckian learning) or not (Baldwinian learning). Thus, the following five design questions[15][19][20] must be answered, the first of which is addressed by all of the above 2nd generation representatives during an MA run, while the extended form of meta-Lamarckian learning of [15] expands this to the first four design decisions.
Selection of an individual learning method or meme to be used for a particular problem or individual
In the context of continuous optimization, individual learning exists in the form of local heuristics or conventional exact enumerative methods.[21] Examples of individual learning strategies include the hill climbing, Simplex method, Newton/Quasi-Newton method, interior point methods, conjugate gradient method, line search, and other local heuristics. Note that most of the common individual learning methods are deterministic.
In combinatorial optimization, on the other hand, individual learning methods commonly exist in the form of heuristics (which can be deterministic or stochastic) that are tailored to a specific problem of interest. Typical heuristic procedures and schemes include the k-gene exchange, edge exchange, first-improvement, and many others.
Determination of the individual learning frequency
One of the first issues pertinent to memetic algorithm design is to consider how often the individual learning should be applied; i.e., individual learning frequency. In one case,[19] the effect of individual learning frequency on MA search performance was considered where various configurations of the individual learning frequency at different stages of the MA search were investigated. Conversely, it was shown elsewhere[22] that it may be worthwhile to apply individual learning on every individual if the computational complexity of the individual learning is relatively low.
Selection of the individuals to which individual learning is applied
On the issue of selecting appropriate individuals among the EA population that should undergo individual learning, fitness-based and distribution-based strategies were studied for adapting the probability of applying individual learning on the population of chromosomes in continuous parametric search problems with Land[23] extending the work to combinatorial optimization problems. Bambha et al. introduced a simulated heating technique for systematically integrating parameterized individual learning into evolutionary algorithms to achieve maximum solution quality.[24]
Specification of the intensity of individual learning
Individual learning intensity, , is the amount of computational budget allocated to an iteration of individual learning; i.e., the maximum computational budget allowable for individual learning to expend on improving a single solution.
Choice of Lamarckian or Baldwinian learning
It is to be decided whether a found improvement is to work only by the better fitness (Baldwinian learning) or whether also the individual is adapted accordingly (lamarckian learning). In the case of an EA, this would mean an adjustment of the genotype. This question has been controversially discussed for EAs in the literature already in the 1990s, stating that the specific use case plays a major role.[25][26][27] The background of the debate is that genome adaptation may promote premature convergence. This risk can be effectively mitigated by other measures to better balance breadth and depth searches, such as the use of structured populations.[28]
Applications
Memetic algorithms have been successfully applied to a multitude of real-world problems. Although many people employ techniques closely related to memetic algorithms, alternative names such as hybrid genetic algorithms are also employed.
IEEE Workshop on Memetic Algorithms (WOMA 2009). Program Chairs: Jim Smith, University of the West of England, U.K.; Yew-Soon Ong, Nanyang Technological University, Singapore; Gustafson Steven, University of Nottingham; U.K.; Meng Hiot Lim, Nanyang Technological University, Singapore; Natalio Krasnogor, University of Nottingham, U.K.
^Poonam Garg (April 2009). "A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm". International Journal of Network Security & Its Applications (IJNSA). 1 (1). arXiv:1004.0574. Bibcode:2010arXiv1004.0574G.
^ abKendall G. and Soubeiga E. and Cowling P. Choice function and random hyperheuristics(PDF). 4th Asia-Pacific Conference on Simulated Evolution and Learning. SEAL 2002. pp. 667–671.
^Burke E. K.; Gendreau M.; Hyde M.; Kendall G.; Ochoa G.; Ouml; zcan E.; Qu R. (2013). "Hyper-heuristics: A Survey of the State of the Art". Journal of the Operational Research Society. 64 (12): 1695–1724. CiteSeerX10.1.1.384.9743. doi:10.1057/jors.2013.71. S2CID3053192.
^Krasnogor N. & Gustafson S. (2002). "Toward truly "memetic" memetic algorithms: discussion and proof of concepts". Advances in Nature-Inspired Computation: The PPSN VII Workshops. PEDAL (Parallel Emergent and Distributed Architectures Lab). University of Reading.
^Ku, K. W. C.; Mak, M. W.; Siu., W. C (2000). "A study of the Lamarckian evolution of recurrent neural networks". IEEE Transactions on Evolutionary Computation. 4 (1): 31–42. doi:10.1109/4235.843493. hdl:10397/289.
^Land, M. W. S. (1998). Evolutionary Algorithms with Local Search for Combinatorial Optimization (Thesis). San Diego, CA: University of California. CiteSeerX10.1.1.55.8986. ISBN978-0-599-12661-9.
^Bambha N. K. and Bhattacharyya S. S. and Teich J. and Zitzler E. (2004). "Systematic integration of parameterized local search into evolutionary algorithms". IEEE Transactions on Evolutionary Computation. 8 (2): 137–155. doi:10.1109/TEVC.2004.823471. S2CID8303351.
^Orvosh, David; Davis, Lawrence (1993), Forrest, Stephanie (ed.), "Shall We Repair? Genetic Algorithms, Combinatorial Optimization, and Feasibility Constraints", Conf. Proc. of the 5th Int. Conf. on Genetic Algorithms (ICGA), San Mateo, CA, USA: Morgan Kaufmann, p. 650, ISBN978-1-55860-299-1, S2CID10098180
^Ichimura, T.; Kuriyama, Y. (1998). Learning of neural networks with parallel hybrid GA using a royal road function. IEEE International Joint Conference on Neural Networks. Vol. 2. New York, NY. pp. 1131–1136. doi:10.1109/IJCNN.1998.685931.
^Aguilar, J.; Colmenares, A. (1998). "Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm". Pattern Analysis and Applications. 1 (1): 52–61. doi:10.1007/BF01238026. S2CID15803359.
^Ridao, M.; Riquelme, J.; Camacho, E.; Toro, M. (1998). "An evolutionary and local search algorithm for planning two manipulators motion". Tasks and Methods in Applied Artificial Intelligence. Lecture Notes in Computer Science. Vol. 1416. Springer-Verlag. pp. 105–114. CiteSeerX10.1.1.324.2668. doi:10.1007/3-540-64574-8_396. ISBN978-3-540-64574-0.
^Harris, S.; Ifeachor, E. (1998). "Automatic design of frequency sampling filters by hybrid genetic algorithm techniques". IEEE Transactions on Signal Processing. 46 (12): 3304–3314. Bibcode:1998ITSP...46.3304H. doi:10.1109/78.735305.
^Augugliaro, A.; Dusonchet, L.; Riva-Sanseverino, E. (1998). "Service restoration in compensated distribution networks using a hybrid genetic algorithm". Electric Power Systems Research. 46 (1): 59–66. Bibcode:1998EPSR...46...59A. doi:10.1016/S0378-7796(98)00025-X.
^França, P.; Mendes, A.; Moscato, P. (1999). Memetic algorithms to minimize tardiness on a single machine with sequence-dependent setup times. Proceedings of the 5th International Conference of the Decision Sciences Institute. Athens, Greece. pp. 1708–1710. S2CID10797987.
^Costa, Daniel (1995). "An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem". INFOR: Information Systems and Operational Research. 33 (3): 161–178. doi:10.1080/03155986.1995.11732279. S2CID15491435.
^Aickelin, U. (1998). Nurse rostering with genetic algorithms. Proceedings of young operational research conference 1998. Guildford, UK. arXiv:1004.2870.
^Ozcan, E. (2007). "Memes, Self-generation and Nurse Rostering". Practice and Theory of Automated Timetabling VI. Lecture Notes in Computer Science. Vol. 3867. Springer-Verlag. pp. 85–104. doi:10.1007/978-3-540-77345-0_6. ISBN978-3-540-77344-3.
^Ozcan, E.; Onbasioglu, E. (2007). "Memetic Algorithms for Parallel Code Optimization". International Journal of Parallel Programming. 35 (1): 33–61. doi:10.1007/s10766-006-0026-x. S2CID15182941.
^Areibi, S.; Yang, Z. (2004). "Effective memetic algorithms for VLSI design automation = genetic algorithms + local search + multi-level clustering". Evolutionary Computation. 12 (3): 327–353. doi:10.1162/1063656041774947. PMID15355604. S2CID2190268.
^Merz, P.; Zell, A. (2002). "Clustering Gene Expression Profiles with Memetic Algorithms". Parallel Problem Solving from Nature — PPSN VII. Lecture Notes in Computer Science. Vol. 2439. Springer. pp. 811–820. doi:10.1007/3-540-45712-7_78. ISBN978-3-540-44139-7.
^G. Karkavitsas & G. Tsihrintzis (2011). "Automatic Music Genre Classification Using Hybrid Genetic Algorithms". Intelligent Interactive Multimedia Systems and Services. Smart Innovation, Systems and Technologies. Vol. 11. Springer. pp. 323–335. doi:10.1007/978-3-642-22158-3_32. ISBN978-3-642-22157-6. S2CID15011089.
Glen Morgan speaking di San Diego Comic Con International 2013 Glen Morgan adalah produser, penulis, dan sutradara televisi Amerika Serikat, yang dikenal atas karyanya The X-Files, Millennium, Space: Above and Beyond, Serial Final Destination, The One, Willard, dan buatan ulang 2006 Black Christmas bersama dengan pasangan penulis jangka panjang James Wong. Pada Mei 2007, Reporter Hollywood melaporkan bahwa Morgan bergabung dalam tim produksi NBC serial Bionic Woman (sebuah penggambaran ulang ...
Riau adalah sebuah provinsi di pulau Sumatra. Penduduk provinsi Riau sangat heterogen. Penduduk aslinya di wilayah timur adalah etnis Melayu sedangkan penduduk asli di bagian barat provinsi ini adalah masyarakat Kampar, Kuantan Singingi dan Rokan Hulu. Sedangkan etnis pendatang, diantaranya yang signifikan adalah Minangkabau, Jawa, Batak, Bugis, Banjar, Tionghoa, dan lain lain. Daftar ini berisi nama tokoh-tokoh yang lahir ataupun berkiprah di provinsi Riau yang berasal dari semua etnis yang ...
This article is part of a series onJoseph Smith 1805 to 1827 1827 to 1830 1831 to 1837 1838 to 1839 1839 to 1844 Death Legal Polygamy Wives Children Teachings Miracles Prophecies Bibliography Chronology Outline Category Latter Day Saints portalvte Joseph Smith, the founder of the Latter Day Saint movement, was charged with approximately thirty criminal actions during his life, and at least that many financial civil suits.[1] Another source reports that Smith was arrested at...
Pour les articles homonymes, voir Révolution (homonymie). Fresque représentant Galilée et le Doge de Venise, Giuseppe Bertini, 1858 La révolution scientifique est généralement considérée comme une discontinuité de la pensée scientifique à une époque donnée, cette rupture amenant un champ disciplinaire — ou plusieurs — à se réorganiser autour de principes et axiomes nouveaux. La notion de « révolution scientifique », portée notamment par Alexandre Koyré (1892...
L'accord parfait de do majeur se compose des notes suivantes : do, mi, sol. La tonalité de do majeur (ut majeur) se développe en partant de la note tonique do ou ut (surtout utilisé dans le langage théorique). Elle est appelée C major en anglais et C-Dur dans l’Europe centrale. Sans aucune altération (ni dièse, ni bémol), l'armure coïncide avec celle de la tonalité relative la mineur naturel. La lecture audio n'est pas prise en charge dans votre navigateur. Vous pouvez t...
Commune in Sud-Est, HaitiJacmel Jakmèl (Haitian Creole)CommuneView of Jacmel.Nickname(s): Culture Capital, City of ArtistsJacmelLocation in HaitiCoordinates: 18°14′7″N 72°32′12″W / 18.23528°N 72.53667°W / 18.23528; -72.53667CountryHaitiDepartmentSud-EstArrondissementJacmelDemonymJacmelien(ne)Founded by Spain1504French settlement1698Founded byNicolás de OvandoGovernment • MayorMarky KessaPopulation (2019)[1] • ...
Suffolk HouseLua error in Modul:Location_map at line 537: Tidak dapat menemukan definisi peta lokasi yang ditentukan. Baik "Modul:Location map/data/George Town, Penang street map" maupun "Templat:Location map George Town, Penang street map" tidak ada.Informasi umumJenisKediamanGaya arsitekturGeorgianAlamat250 Air Itam Road, George Town, PenangKotaGeorge Town, PenangNegaraMalaysiaKoordinat5°24′39″N 100°18′20″E / 5.410743°N 100.305464°E / ...
Japanese manga series and franchise This article is about the manga series. For the Spanish-language court show, see Caso Cerrado. For other uses, see Case Closed (disambiguation). Case Closed36th North American volume cover, featuring Conan Edogawa名探偵コナン(Meitantei Konan)GenreMystery[1]Thriller[1] MangaWritten byGosho AoyamaPublished byShogakukanEnglish publisherNA: Viz MediaSEA: Shogakukan Asia (as Detective Conan)ImprintShōnen Sunday ComicsMagazineWeek...
Cet article est une ébauche concernant l’éducation et un loisir. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Récréation dans le bac à sable La récréation (familièrement, la récré) est une pause accordée aux élèves des écoles, collèges et lycées. En France, il y a deux récréations le matin pour les petits de la première section de maternelle au CP et une seule pour les CM1 et plus. L'apr�...
452nd Air Mobility WingA 452nd AMW C-17 Globemaster III from March ARB A March Air Reserve Base KC-135 extends its refueling boom for display during the March Field AirFest 2012, held 19–20 May 2012.Active1949–1952; 1952–presentCountry United StatesBranch United States Air ForceTypeWingRoleAirlift/Air RefuelingPart of Air Force Reserve CommandGarrison/HQMarch Air Reserve Base, CaliforniaMotto(s)Labor ad Futurum Latin Work for the Future[1]Tail CodeGold/Red ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) منتخب أنتيغوا وباربودا لكأس ديفيز البلد أنتيغوا وباربودا تعديل مصدري - تعديل منتخب أنتيغوا وباربو�...
لمعانٍ أخرى، طالع الحديقة الإنجليزية (توضيح). الحديقة الإنجليزية البلد أرمينيا سميت باسم إنجلترا الموقع يريفان إحداثيات 40°10′27″N 44°30′29″E / 40.17416667°N 44.50805556°E / 40.17416667; 44.50805556 تاريخ التأسيس العقد 1860 تعديل مصدري - تعديل الحديقة الإنجل...
British trade unionist and politician Purcell in 1920 Albert Arthur Alf Purcell (3 November 1872, Hoxton – 24 December 1935)[1] was a British trade unionist and Labour Party politician. He was a founding member of the Communist Party of Great Britain and later President of the International Federation of Trade Unions from 1924 to 1928[2] and sat in the House of Commons during two separate periods between 1923 and 1929. Early life The son of a French polisher, Purcell lived i...
This article is about the melody. For the Coldplay song, see Coloratura (song). Type of elaborate melody Farinelli, a soprano castrato famous for singing baroque coloratura roles (Bartolomeo Nazari, 1734) Coloratura is an elaborate melody with runs, trills, wide leaps, or similar virtuoso-like material,[1][2] or a passage of such music. Operatic roles in which such music plays a prominent part, and singers of these roles, are also called coloratura.[3] Its instrumental...
American actor (born 1975) Casey AffleckAffleck at the Manchester by the Sea premiere in 2016BornCaleb Casey McGuire Affleck-Boldt (1975-08-12) August 12, 1975 (age 48)Falmouth, Massachusetts, U.S.EducationGeorge Washington UniversityColumbia UniversityOccupationsActorfilmmakerYears active1988–presentSpouse Summer Phoenix (m. 2006; div. 2017)Children2RelativesBen Affleck (brother)AwardsFull list Casey Affleck (born Caleb Casey Mc...
تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. سيقا ضريح صيفاقسضريح صيفاقس الموقع الجزائر المنطقة ولاية عين تموشنت إحداثيات 3...
Etymology of the names of Korea This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Names of Korea – news · newspapers · books · scholar · JSTOR (January 2007) (Learn how and when to remove this message) There are various names of Korea in use today that are all derived from those of ancient Koreanic kingdoms an...