Matrix ring

In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication.[1] The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R)[2][3][4][5] (alternative notations: Matn(R)[3] and Rn×n[6]). Some sets of infinite matrices form infinite matrix rings. A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs.

When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra. In this setting, if M is a matrix and r is in R, then the matrix rM is the matrix M with each of its entries multiplied by r.

Examples

  • The set of all n × n square matrices over R, denoted Mn(R). This is sometimes called the "full ring of n-by-n matrices".
  • The set of all upper triangular matrices over R.
  • The set of all lower triangular matrices over R.
  • The set of all diagonal matrices over R. This subalgebra of Mn(R) is isomorphic to the direct product of n copies of R.
  • For any index set I, the ring of endomorphisms of the right R-module is isomorphic to the ring [citation needed] of column finite matrices whose entries are indexed by I × I and whose columns each contain only finitely many nonzero entries. The ring of endomorphisms of M considered as a left R-module is isomorphic to the ring of row finite matrices.
  • If R is a Banach algebra, then the condition of row or column finiteness in the previous point can be relaxed. With the norm in place, absolutely convergent series can be used instead of finite sums. For example, the matrices whose column sums are absolutely convergent sequences form a ring.[dubiousdiscuss] Analogously of course, the matrices whose row sums are absolutely convergent series also form a ring.[dubiousdiscuss] This idea can be used to represent operators on Hilbert spaces, for example.
  • The intersection of the row-finite and column-finite matrix rings forms a ring .
  • If R is commutative, then Mn(R) has a structure of a *-algebra over R, where the involution * on Mn(R) is matrix transposition.
  • If A is a C*-algebra, then Mn(A) is another C*-algebra. If A is non-unital, then Mn(A) is also non-unital. By the Gelfand–Naimark theorem, there exists a Hilbert space H and an isometric *-isomorphism from A to a norm-closed subalgebra of the algebra B(H) of continuous operators; this identifies Mn(A) with a subalgebra of B(Hn). For simplicity, if we further suppose that H is separable and A B(H) is a unital C*-algebra, we can break up A into a matrix ring over a smaller C*-algebra. One can do so by fixing a projection p and hence its orthogonal projection 1 − p; one can identify A with , where matrix multiplication works as intended because of the orthogonality of the projections. In order to identify A with a matrix ring over a C*-algebra, we require that p and 1 − p have the same "rank"; more precisely, we need that p and 1 − p are Murray–von Neumann equivalent, i.e., there exists a partial isometry u such that p = uu* and 1 − p = u*u. One can easily generalize this to matrices of larger sizes.
  • Complex matrix algebras Mn(C) are, up to isomorphism, the only finite-dimensional simple associative algebras over the field C of complex numbers. Prior to the invention of matrix algebras, Hamilton in 1853 introduced a ring, whose elements he called biquaternions[7] and modern authors would call tensors in CR H, that was later shown to be isomorphic to M2(C). One basis of M2(C) consists of the four matrix units (matrices with one 1 and all other entries 0); another basis is given by the identity matrix and the three Pauli matrices.
  • A matrix ring over a field is a Frobenius algebra, with Frobenius form given by the trace of the product: σ(A, B) = tr(AB).

Structure

  • The matrix ring Mn(R) can be identified with the ring of endomorphisms of the free right R-module of rank n; that is, Mn(R) ≅ EndR(Rn). Matrix multiplication corresponds to composition of endomorphisms.
  • The ring Mn(D) over a division ring D is an Artinian simple ring, a special type of semisimple ring. The rings and are not simple and not Artinian if the set I is infinite, but they are still full linear rings.
  • The Artin–Wedderburn theorem states that every semisimple ring is isomorphic to a finite direct product , for some nonnegative integer r, positive integers ni, and division rings Di.
  • When we view Mn(C) as the ring of linear endomorphisms of Cn, those matrices which vanish on a given subspace V form a left ideal. Conversely, for a given left ideal I of Mn(C) the intersection of null spaces of all matrices in I gives a subspace of Cn. Under this construction, the left ideals of Mn(C) are in bijection with the subspaces of Cn.
  • There is a bijection between the two-sided ideals of Mn(R) and the two-sided ideals of R. Namely, for each ideal I of R, the set of all n × n matrices with entries in I is an ideal of Mn(R), and each ideal of Mn(R) arises in this way. This implies that Mn(R) is simple if and only if R is simple. For n ≥ 2, not every left ideal or right ideal of Mn(R) arises by the previous construction from a left ideal or a right ideal in R. For example, the set of matrices whose columns with indices 2 through n are all zero forms a left ideal in Mn(R).
  • The previous ideal correspondence actually arises from the fact that the rings R and Mn(R) are Morita equivalent. Roughly speaking, this means that the category of left R-modules and the category of left Mn(R)-modules are very similar. Because of this, there is a natural bijective correspondence between the isomorphism classes of left R-modules and left Mn(R)-modules, and between the isomorphism classes of left ideals of R and left ideals of Mn(R). Identical statements hold for right modules and right ideals. Through Morita equivalence, Mn(R) inherits any Morita-invariant properties of R, such as being simple, Artinian, Noetherian, prime.

Properties

  • If S is a subring of R, then Mn(S) is a subring of Mn(R). For example, Mn(Z) is a subring of Mn(Q).
  • The matrix ring Mn(R) is commutative if and only if n = 0, R = 0, or R is commutative and n = 1. In fact, this is true also for the subring of upper triangular matrices. Here is an example showing two upper triangular 2 × 2 matrices that do not commute, assuming 1 ≠ 0 in R:
    and
  • For n ≥ 2, the matrix ring Mn(R) over a nonzero ring has zero divisors and nilpotent elements; the same holds for the ring of upper triangular matrices. An example in 2 × 2 matrices would be
  • The center of Mn(R) consists of the scalar multiples of the identity matrix, In, in which the scalar belongs to the center of R.
  • The unit group of Mn(R), consisting of the invertible matrices under multiplication, is denoted GLn(R).
  • If F is a field, then for any two matrices A and B in Mn(F), the equality AB = In implies BA = In. This is not true for every ring R though. A ring R whose matrix rings all have the mentioned property is known as a stably finite ring (Lam 1999, p. 5).

Matrix semiring

In fact, R needs to be only a semiring for Mn(R) to be defined. In this case, Mn(R) is a semiring, called the matrix semiring. Similarly, if R is a commutative semiring, then Mn(R) is a matrix semialgebra.

For example, if R is the Boolean semiring (the two-element Boolean algebra R = {0, 1} with 1 + 1 = 1),[8] then Mn(R) is the semiring of binary relations on an n-element set with union as addition, composition of relations as multiplication, the empty relation (zero matrix) as the zero, and the identity relation (identity matrix) as the unity.[9]

See also

Citations

  1. ^ Lam (1999), Theorem 3.1
  2. ^ Lam (2001).
  3. ^ a b Lang (2005), V.§3
  4. ^ Serre (2006), p. 3
  5. ^ Serre (1979), p. 158
  6. ^ Artin (2018), Example 3.3.6(a)
  7. ^ Lecture VII of Sir William Rowan Hamilton (1853) Lectures on Quaternions, Hodges and Smith
  8. ^ Droste & Kuich (2009), p. 7
  9. ^ Droste & Kuich (2009), p. 8

References

  • Artin (2018), Algebra, Pearson
  • Droste, M.; Kuich, W (2009), "Semirings and Formal Power Series", Handbook of Weighted Automata, Monographs in Theoretical Computer Science. An EATCS Series, pp. 3–28, doi:10.1007/978-3-642-01492-5_1, ISBN 978-3-642-01491-8
  • Lam, T. Y. (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98428-5
  • Lam (2001), A first course on noncommutative rings (2nd ed.), Springer
  • Lang (2005), Undergraduate algebra, Springer
  • Serre (1979), Local fields, Springer
  • Serre (2006), Lie algebras and Lie groups (2nd ed.), Springer, corrected 5th printing

Read other articles:

Instrument for measuring solar irradiance A pyranometer (from Greek πῦρ (pyr) 'fire', and ἄνω (ano) 'above, sky') is a type of actinometer used for measuring solar irradiance on a planar surface and it is designed to measure the solar radiation flux density (W/m2) from the hemisphere above within a wavelength range 0.3 μm to 3 μm. A typical pyranometer does not require any power to operate. However, recent technical development includes use of electronics...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Persatuan Ulama Muslim Internasional (bahasa Arab: الإتحاد العالمي لعلماء المسلمين al-Ittihaad al-'Aalami li' Ulama'i al-Muslimin, bahasa Inggris: International Union of Muslim Scholars, disingkat IUMS) adalah sebuah Organisas...

 

 

1982 single by Whitesnake This article is about the song by Whitesnake. For other uses, see Here I Go Again (disambiguation). Here I Go AgainSingle by Whitesnakefrom the album Saints & Sinners B-sideBloody LuxuryReleasedOctober 1982[1]Recorded1982StudioGoodnight L.A. Studios, Los Angeles, USGenreGlam metalblues rock[2]Length5:09LabelGeffenSongwriter(s) David Coverdale Bernie Marsden Producer(s)Martin BirchWhitesnake singles chronology Would I Lie to You (1981) Here I Go Ag...

Town in New Hampshire, United StatesMoultonborough, New HampshireTownSwallow Boathouse in Moultonborough SealLocation in Carroll County, New HampshireCoordinates: 43°45′18″N 71°23′47″W / 43.75500°N 71.39639°W / 43.75500; -71.39639CountryUnited StatesStateNew HampshireCountyCarrollIncorporated1777VillagesMoultonboroughMoultonborough FallsLees MillSuissevaleGovernment • Board of SelectmenJonathan W. Tolman, ChairShari ColbyJean M. ...

 

 

Route in Israel Route 386כביש 386Refaim Bridge, at which the Jaffa–Jerusalem railway is passing below road 386, at the point Nahal Refaim is entering Nahal SorekRoute informationLength23 km (14 mi)Major junctionsNorth endTzur Hadassah JunctionMajor intersectionsNes Harim JunctionKerem JunctionHolland SquareMolikovsky SquareDenia SquareHaft SquareSouth endJunction at Shazar Blvd LocationCountryIsrael Highway system Roads in Israel Highways ← Route 367→ Route ...

 

 

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт�...

For data relating to SSSIs in this Area of Search see List of Sites of Special Scientific Interest in Conwy, Denbighshire, Flintshire, and Wrexham.   Clwyd AOS SSSIs in the UK are notified using the concept of an Area of Search (AOS), an area of between 400 km2 (150 sq mi) and 4,000 km2 (1,500 sq mi) in size.[1] The Areas of Search were conceived and developed between 1975 and 1979 by the Nature Conservancy Council (NCC), based on regions creat...

 

 

Miles Teller al San Diego Comic-Con International nel 2015 Miles Alexander Teller (Downingtown, 20 febbraio 1987) è un attore statunitense. Indice 1 Biografia 2 Vita privata 3 Filmografia 3.1 Attore 3.1.1 Cinema 3.1.2 Televisione 3.1.3 Cortometraggi 3.1.4 Video musicali 3.2 Produttore 4 Premi e riconoscimenti 5 Doppiatori italiani 6 Note 7 Altri progetti 8 Collegamenti esterni Biografia Miles nasce a Downingtown, in Pennsylvania. I suoi genitori sono Merry e Mike Teller, rispettivamente un'a...

 

 

American basketball player and coach Johnny LoganLogan in 1948Personal informationBorn(1921-01-01)January 1, 1921Richmond, Indiana, U.S.DiedSeptember 16, 1977(1977-09-16) (aged 56)Charlotte, North Carolina, U.S.NationalityAmericanListed height6 ft 2 in (1.88 m)Listed weight175 lb (79 kg)Career informationHigh schoolRichmond (Richmond, Indiana)CollegeIndiana (1940–1943)Playing career1946–1951PositionGuardNumber7, 17Career historyAs player:1946–1950St. Louis ...

Національний військовий медичний центр імені Волтера Ріда Тип військовий шпитальЗасновано 1940Кількість ліжок 1200[1][2], 2464[1][2] і 244[3]Країна  СШААдреса Бетесда, МерілендКоординати 39°00′07″ пн. ш. 77°05′37″ зх. д. / 39.001944444472222528° �...

 

 

Cet article est une ébauche concernant une commune de la Loire. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’aide à...

 

 

Indian political leader and social reformer (1866–1915) Gopal Gokhale CIEGokhale in 1909Born(1866-05-09)9 May 1866Guhagar, Bombay, British RajDied19 February 1915(1915-02-19) (aged 48)Bombay, Bombay, British RajAlma materElphinstone CollegeOccupation(s)Professor, politicianPolitical partyIndian National CongressMovementIndian independence movementSpouse(s)Savitri Bai (1880–1887)Rishibama (1887–1899)Children2 Gopal Krishna Gokhale CIE (listenⓘ [ˈɡoːpaːl ˈkrɪʂɳə ˈɡo...

Soft, fine feather, sometimes under larger feathers Down feathers lack the interlocking barbules of pennaceous feathers, making them very soft and fluffy. The down of birds is a layer of fine feathers found under the tougher exterior feathers. Very young birds are clad only in down. Powder down is a specialized type of down found only in a few groups of birds. Down is a fine thermal insulator and padding, used in goods such as jackets, bedding (duvets and featherbeds), pillows and sleeping ba...

 

 

Artikel ini bukan mengenai Semut di atas kayu. Semut memanjat pohon Semut memanjat pohon Hanzi tradisional: 螞蟻上樹 Hanzi sederhana: 蚂蚁上树 Alih aksara Mandarin - Hanyu Pinyin: mǎyǐshàngshù Semut memanjat pohon (Hanzi sederhana: 蚂蚁上树; Hanzi tradisional: 螞蟻上樹; Pinyin: Mǎyǐshàngshù) adalah sebuah hidangan Sichuan klasik dalam hidangan Tionghoa.[1] Nama hidangan tersebut dalam bahasa Tionghoa, Mayishangshu, diterjemahkan menjadi semut memanj...

 

 

لوتروس Λουτρός تقسيم إداري البلد اليونان  [1] المنطقة الإدارية مقدونيا الشرقية وتراقيا الوحدة الإقليمية إفروس البلدية أليكساندروبولي وحدة البلدية ترايانوبولي إحداثيات 40°52′54″N 26°02′49″E / 40.881666666667°N 26.046944444444°E / 40.881666666667; 26.046944444444   السكان التعداد السك...

مرتبة تصنيفيةمعلومات عامةصنف فرعي من تراتب اجتماعي جانب من جوانب علم التصنيف (أحياء) تعديل - تعديل مصدري - تعديل ويكي بيانات يوضح هذا الرسم البياني المراتب التصنيفية الرئيسية:النطاق، والمملكة، والشعبة، والطائفة، والرتبة، والفصيلة، والجنس، والنوع. يوضح هذا المخطط كيفية اس...

 

 

International sporting eventAthletics at the1983 Pan American GamesTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mwomen5000 mmen10,000 mmen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmen20 km walkmen50 km walkmenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined...

 

 

American politician For his son, the senator, governor, and judge, see Ernest W. Gibson Jr. For his grandson, the judge, see Ernest W. Gibson III. Ernest W. GibsonUnited States Senatorfrom VermontIn officeNovember 21, 1933 – June 20, 1940Preceded byPorter H. DaleSucceeded byErnest W. Gibson Jr.Member of the U.S. House of Representativesfrom VermontIn officeNovember 6, 1923 – October 19, 1933Preceded byPorter H. DaleSucceeded byCharles A. PlumleyConstituency2n...

Dieser Artikel befasst sich mit der kanadischen Stadt. Für weitere Bedeutungen siehe Montreal (Begriffsklärung). Montréal Von oben nach unten, von links nach rechts: Skyline vom Mont Royal aus gesehen, die Altstadt (Vieux-Montréal), Notre-Dame de Montréal, der alte Hafen, St.-Josephs-Oratorium, das Olympiastadion Wappen Flagge Motto: Concordia Salus(lat.: „Wohlergehen durch Harmonie“) Lage in Québec Montréal (Québec) Montréal Staat: Kanada Kanada Provinz: Québec Région ad...

 

 

صورة لبرج جامعة بغداد الذي يضم رئاسة الجامعة وقد صممه المهندسون والتر غروبيوس وروبرت ماكميلان ولويس ماكميلن في شركة آركيتكت مولابوريتف. تنقسم جامعات العراق إلى أربع أقسام أساسية من الجامعات: الأولى هي الجامعات الحكومية؛ وهي المملوكة للحكومة، ثم جامعات إقليم كردستان؛ وهي...