Mass diffusivity

Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry.

The diffusivity is generally prescribed for a given pair of species and pairwise for a multi-species system. The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm2/s, and in water its diffusion coefficient is 0.0016 mm2/s.[1][2]

Diffusivity has dimensions of length2 / time, or m2/s in SI units and cm2/s in CGS units.

Temperature dependence of the diffusion coefficient

Solids

The diffusion coefficient in solids at different temperatures is generally found to be well predicted by the Arrhenius equation:

where

  • D is the diffusion coefficient (in m2/s),
  • D0 is the maximal diffusion coefficient (at infinite temperature; in m2/s),
  • EA is the activation energy for diffusion (in J/mol),
  • T is the absolute temperature (in K),
  • R ≈ 8.31446 J/(mol⋅K) is the universal gas constant.

Diffusion in crystalline solids, termed lattice diffusion, is commonly regarded to occur by two distinct mechanisms,[3] interstitial and substitutional or vacancy diffusion. The former mechanism describes diffusion as the motion of the diffusing atoms between interstitial sites in the lattice of the solid it is diffusion into, the latter describes diffusion through a mechanism more analogue to that in liquids or gases: Any crystal at nonzero temperature will have a certain number of vacancy defects (i.e. empty sites on the lattice) due to the random vibrations of atoms on the lattice, an atom neighbouring a vacancy can spontaneously "jump" into the vacancy, such that the vacancy appears to move. By this process the atoms in the solid can move, and diffuse into each other. Of the two mechanisms, interstitial diffusion is typically more rapid.[3]

Liquids

An approximate dependence of the diffusion coefficient on temperature in liquids can often be found using Stokes–Einstein equation, which predicts that

where

  • D is the diffusion coefficient,
  • T1 and T2 are the corresponding absolute temperatures,
  • μ is the dynamic viscosity of the solvent.

Gases

The dependence of the diffusion coefficient on temperature for gases can be expressed using Chapman–Enskog theory (predictions accurate on average to about 8%):[4]

where

  • D is the diffusion coefficient (cm2/s),[4][5]
  • A is approximately (with Boltzmann constant , and Avogadro constant )
  • 1 and 2 index the two kinds of molecules present in the gaseous mixture,
  • T is the absolute temperature (K),
  • M is the molar mass (g/mol),
  • p is the pressure (atm),
  • is the average collision diameter (the values are tabulated[6] page 545) (Å),
  • Ω is a temperature-dependent collision integral (the values tabulated for some intermolecular potentials,[6] can be computed from correlations for others,[7] or must be evaluated numerically.) (dimensionless).

The relation

is obtained when inserting the ideal gas law into the expression obtained directly from Chapman-Enskog theory,[8] which may be written as

where is the molar density (mol / m) of the gas, and

,

with the universal gas constant. At moderate densities (i.e. densities at which the gas has a non-negligible co-volume, but is still sufficiently dilute to be considered as gas-like rather than liquid-like) this simple relation no longer holds, and one must resort to Revised Enskog Theory.[9] Revised Enskog Theory predicts a diffusion coefficient that decreases somewhat more rapidly with density, and which to a first approximation may be written as

where is the radial distribution function evaluated at the contact diameter of the particles. For molecules behaving like hard, elastic spheres, this value can be computed from the Carnahan-Starling Equation, while for more realistic intermolecular potentials such as the Mie potential or Lennard-Jones potential, its computation is more complex, and may involve invoking a thermodynamic perturbation theory, such as SAFT.

Pressure dependence of the diffusion coefficient

For self-diffusion in gases at two different pressures (but the same temperature), the following empirical equation has been suggested:[4] where

  • D is the diffusion coefficient,
  • ρ is the gas mass density,
  • P1 and P2 are the corresponding pressures.

Population dynamics: dependence of the diffusion coefficient on fitness

In population dynamics, kinesis is the change of the diffusion coefficient in response to the change of conditions. In models of purposeful kinesis, diffusion coefficient depends on fitness (or reproduction coefficient) r:

where is constant and r depends on population densities and abiotic characteristics of the living conditions. This dependence is a formalisation of the simple rule: Animals stay longer in good conditions and leave quicker bad conditions (the "Let well enough alone" model).

Effective diffusivity in porous media

The effective diffusion coefficient describes diffusion through the pore space of porous media.[10] It is macroscopic in nature, because it is not individual pores but the entire pore space that needs to be considered. The effective diffusion coefficient for transport through the pores, De, is estimated as follows: where

  • D is the diffusion coefficient in gas or liquid filling the pores,
  • εt is the porosity available for the transport (dimensionless),
  • δ is the constrictivity (dimensionless),
  • τ is the tortuosity (dimensionless).

The transport-available porosity equals the total porosity less the pores which, due to their size, are not accessible to the diffusing particles, and less dead-end and blind pores (i.e., pores without being connected to the rest of the pore system). The constrictivity describes the slowing down of diffusion by increasing the viscosity in narrow pores as a result of greater proximity to the average pore wall. It is a function of pore diameter and the size of the diffusing particles.

Example values

Gases at 1 atm., solutes in liquid at infinite dilution. Legend: (s) – solid; (l) – liquid; (g) – gas; (dis) – dissolved.

Values of diffusion coefficients (gas)[4]
Species pair Temperature
(°C)
D
(cm2/s)
Solute Solvent
Water (g) Air (g) 25 0.260
Oxygen (g) Air (g) 25 0.176
Values of diffusion coefficients (liquid)[4]
Species pair Temperature
(°C)
D
(cm2/s)
Solute Solvent
Acetone (dis) Water (l) 25 1.16×10−5
Air (dis) Water (l) 25 2.00×10−5
Ammonia (dis) Water (l) 12[citation needed] 1.64×10−5
Argon (dis) Water (l) 25 2.00×10−5
Benzene (dis) Water (l) 25 1.02×10−5
Bromine (dis) Water (l) 25 1.18×10−5
Carbon monoxide (dis) Water (l) 25 2.03×10−5
Carbon dioxide (dis) Water (l) 25 1.92×10−5
Chlorine (dis) Water (l) 25 1.25×10−5
Ethane (dis) Water (l) 25 1.20×10−5
Ethanol (dis) Water (l) 25 0.84×10−5
Ethylene (dis) Water (l) 25 1.87×10−5
Helium (dis) Water (l) 25 6.28×10−5
Hydrogen (dis) Water (l) 25 4.50×10−5
Hydrogen sulfide (dis) Water (l) 25 1.41×10−5
Methane (dis) Water (l) 25 1.49×10−5
Methanol (dis) Water (l) 25 0.84×10−5
Nitrogen (dis) Water (l) 25 1.88×10−5
Nitric oxide (dis) Water (l) 25 2.60×10−5
Oxygen (dis) Water (l) 25 2.10×10−5
Propane (dis) Water (l) 25 0.97×10−5
Water (l) Acetone (l) 25 4.56×10−5
Water (l) Ethyl alcohol (l) 25 1.24×10−5
Water (l) Ethyl acetate (l) 25 3.20×10−5
Values of diffusion coefficients (solid)[4]
Species pair Temperature
(°C)
D
(cm2/s)
Solute Solvent
Hydrogen Iron (s) 10 1.66×10−9
Hydrogen Iron (s) 100 124×10−9
Aluminium Copper (s) 20 1.3×10−30

See also

References

  1. ^ CRC Press Online: CRC Handbook of Chemistry and Physics, Section 6, 91st Edition
  2. ^ Diffusion
  3. ^ a b Callister, William D.; Rethwisch, David G. (2012). Fundamentals of materials science and engineering: an integrated approach (4 ed.). Hoboken, NJ: Wiley. ISBN 978-1-118-06160-2.
  4. ^ a b c d e f Cussler, E. L. (1997). Diffusion: Mass Transfer in Fluid Systems (2nd ed.). New York: Cambridge University Press. ISBN 0-521-45078-0.
  5. ^ Welty, James R.; Wicks, Charles E.; Wilson, Robert E.; Rorrer, Gregory (2001). Fundamentals of Momentum, Heat, and Mass Transfer. Wiley. ISBN 978-0-470-12868-8.
  6. ^ a b Hirschfelder, J.; Curtiss, C. F.; Bird, R. B. (1954). Molecular Theory of Gases and Liquids. New York: Wiley. ISBN 0-471-40065-3.
  7. ^ "К юбилею Г.И. Канеля". Теплофизика высоких температур (in Russian). 52 (4): 487–488. 2014. doi:10.7868/s0040364414040279. ISSN 0040-3644.
  8. ^ Chapman, Sydney; Cowling, Thomas George; Burnett, David (1990). The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge mathematical library (3rd ed.). Cambridge New York Port Chester [etc.]: Cambridge university press. ISBN 978-0-521-40844-8.
  9. ^ Cohen, E. G. D. (1993-03-15). "Fifty years of kinetic theory". Physica A: Statistical Mechanics and its Applications. 194 (1): 229–257. doi:10.1016/0378-4371(93)90357-A. ISSN 0378-4371.
  10. ^ Grathwohl, P. (1998). Diffusion in natural porous media: Contaminant transport, sorption / desorption and dissolution kinetics. Kluwer Academic. ISBN 0-7923-8102-5.

Read other articles:

Sharaf al-Dīn al-Muẓaffar ibn Muḥammad ibn al-Muẓaffar al-Ṭūsī (1135-1213) adalah matematikawan dan astronom Islam dari Persia. Sharif al-Din mengajar berbagai topik matematika, astronomi dan yang terkait, seperti bilangan, tabel astronomi, dan astrologi. Al-Tusi menulis beberapa makalah tentang aljabar. Dia memberikan metode yang kemudian dinamakan sebagai metode Ruffini-Horner untuk menghampiri akar persamaan kubik. Meskipun sebelumnya metode inini telah digunakan oleh para matem...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Stadion Thamir LokasiLokasi Al Salmiya, KuwaitData teknisPermukaanRumputKapasitas16,105PemakaiAl Salmiya ClubSunting kotak info • L • BBantuan penggunaan templat ini Stadion Thamir adalah stadion serba guna di Al Salmiya, Kuwait. Saat in...

 

 

Halaman ini berisi artikel tentang pelukis Amerika Serikat. Untuk penyair Amerika Serikat, lihat John Trumbull (penyair). Untuk politisi Amerika Serikat, lihat John H. Trumbull. John TrumbullPotret diri, c. 1802Lahir(1756-06-06)6 Juni 1756Lebanon, ConnecticutMeninggal10 November 1843(1843-11-10) (umur 87)New York, New YorkKebangsaanAmerika SerikatPendidikandari Benjamin WestDikenal atasMelukisKarya terkenalDeklarasi Kemerdekaan (1817-1819) John Trumbull (/ˈtrʌmbəl/; 6 Juni 1756&...

The Killing is an American serial crime drama television series developed by Veena Sud, based on the Danish series of the same name that premiered on AMC on April 3, 2011.[1] The first two seasons center on the homicide of a young girl, Rosie Larsen, and its ensuing consequences on the police force, the suspects, and her distraught family. The third and fourth seasons focus on separate murder investigations. It stars Mireille Enos and Joel Kinnaman as two homicide detectives, as they...

 

 

Pour les articles homonymes, voir Acteur (homonymie) et Comédien (homonymie). Acteurs en costume d'époque, plaisantant en attendant les prises de vue d'un téléfilm à l'hôtel Somerset à Londres. Actrice jouant au théâtre du Kaléidoscope, à Cracovie en mai 2018). Un acteur ou une actrice (ou comédien et comédienne), prête son physique ou sa voix à un personnage fictif au théâtre, au cinéma, à la télévision, à la radio, ou encore dans un jeu vidéo, selon des règles artis...

 

 

Catholic archdiocese in the United States Archdiocese of NewarkArchidiœcesis NovarcensisCathedral Basilica of the Sacred HeartCoat of Arms of the Archdiocese of NewarkLocationCountry United StatesTerritoryCounties of Bergen, Essex, Hudson and Union, New JerseyEcclesiastical provinceNewarkHeadquartersNewark, New JerseyStatisticsArea1,328 km2 (513 sq mi)Population- Total- Catholics(as of 2016)3,179,2761,469,295 (46.2%)InformationDenominationRoman CatholicSui ...

Term for a popular film Queue for Gone with the Wind in Pensacola, Florida (1947) A blockbuster is a work of entertainment—typically used to describe a feature film produced by a major film studio, but also other media—that is highly popular and financially successful. The term has also come to refer to any large-budget production intended for blockbuster status, aimed at mass markets with associated merchandising, sometimes on a scale that meant the financial fortunes of a film studio or...

 

 

HitmixesAlbum mini karya Lady GagaDirilisAugust 25, 2009GenreDance-popDurasi30:23LabelStreamline, Kon Live, Cherrytree, InterscopeProduserChew Fu, Guéna LG, Moto Blanco, RedOne, Robots to Mars, Space CowboyKronologi Lady Gaga The Cherrytree Sessions(2009)The Cherrytree Sessions2009 Hitmixes(2009) The Fame Monster(2009)The Fame Monster2009 Hitmixes adalah album mini (EP) kedua dari artis rekaman Amerika Lady Gaga, dirilis pada 25 Agustus, 2009. Beresi remix dari lagu-lagu album debut Gaga...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Stevie NicksNicks, 2017LahirStephanie Lynn Nicks26 Mei 1948 (umur 75)Phoenix, Arizona, A.S.AlmamaterUniversitas San JosePekerjaanPenyanyi, penulis laguTahun aktif1966–sekarangSuami/istriKim Anderson ​ ​(m. 1983; c. 1983)​Pasangan Lindsey Buckingham (1969–1976) Don Henley (1977–1978) Joe Walsh (1983–1986) Karier musikGenreRockInstrumenVokalLabel Atlantic Modern Reprise WEA Warner Bros. Situs webstevienicksofficial.comTanda tang...

 

 

Lou Andreas-SaloméLou Andreas-Salomé pada 1914LahirDipersengketakan(1861-02-12)12 Februari 1861Saint Petersburg, Kekaisaran RusiaMeninggal5 Februari 1937(1937-02-05) (umur 75)Göttingen, JermanSebab meninggalGagal ginjalKebangsaanRusia Lou Andreas-Salomé (Louise von Salomé, Luíza Gustavovna Salomé, Lioulia von Salomé, bahasa Rusia: Луиза Густавовна Саломе; 12 Februari 1861 – 5 Februari 1937) adalah seorang penulis dan psikoanalis kela...

 

 

1202 Pluit Selatan Halte TransjakartaHalte Pluit Selatan pada Januari 2024LetakKotaJakarta UtaraDesa/kelurahanPluit, PenjaringanKodepos14450AlamatJalan Pluit SelatanKoordinat6°07′31″S 106°47′59″E / 6.1252441°S 106.7996467°E / -6.1252441; 106.7996467Koordinat: 6°07′31″S 106°47′59″E / 6.1252441°S 106.7996467°E / -6.1252441; 106.7996467Desain HalteStruktur BRT, median jalan bebas 1 tengah Pintu masukMelalui jembatan ha...

Category of white blood cells GranulocyteTypes of granulocytesDetailsSystemImmune systemIdentifiersMeSHD006098FMA62854Anatomical terms of microanatomy[edit on Wikidata] Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm.[1] Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear, that is, they have varying shapes (morphology) of the nucleus (segmented, i...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Moon Je-ChunInformasi pribadiTanggal lahir 15 April 1987 (umur 37)Tempat lahir Korea SelatanPosisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)2005-2006 Tokyo Verdy * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Moon ...

 

 

Spanish sculptor (1727–1797) You can help expand this article with text translated from the corresponding article in Spanish. (June 2014) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text t...

Explosive weapon that utilizes nuclear reactions For other uses, see Atom bomb (disambiguation), A-bomb (disambiguation) or Nuke (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nuclear weapon – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this message...

 

 

Goat Island Marine Reserve New Zealand has 44 marine reserves (as of August 2020) spread around the North, the South Island, and neighbouring islands, and on outlying island groups. They are governed by the Marine Reserves Act 1971 and administered by the Department of Conservation with assistance from the Ministry for Primary Industries (formally the Ministry of Fisheries), New Zealand Customs Service and the New Zealand Defence Forces.[1] History The Marine Reserves Act was passed ...

 

 

Questa voce o sezione sull'argomento centri abitati del Lazio non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. TremensuolifrazioneTremensuoli – VedutaPiazza Cappelle LocalizzazioneStato Italia Regione Lazio Provincia Latina ComuneMinturno TerritorioCoordinate41°15′43.9″N 13°43′28.1″E41°15′43.9″N, 13°43′28.1″E (Tremens...

Italian actress (born 1964) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Francesca Neri – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Fr...

 

 

1908 academic conference held to standardize the Albanian alphabet The core commission of the Congress: 1. Gjergj Fishta 2. Mid'hat Frashëri 3. Luigj Gurakuqi 4. Gjergj Qiriazi 5. Dom Ndre Mjeda 6. Grigor Cilka 7. Dhimitër Buda 8. Shahin Kolonja 9. Sotir Peci 10. Bajo Topulli 11. Nyz'het Vrioni Photo by Kel Marubi The Congress of Manastir (Albanian: Kongresi i Manastirit) was an academic conference held in the city of Manastir (now Bitola) from November 14 to 22, 1908, with the goal of stan...