Maor Buzaglo
|
Read other articles:
Adiantum caudatum TaksonomiDivisiPteridophytaKelasPolypodiopsidaSubkelasPolypodiidaeOrdoPolypodialesUpaordoPteridineaeFamiliPteridaceaeSubfamiliVittarioideaeGenusAdiantumSpesiesAdiantum caudatum Linnaeus, 1771 lbs Suplir berekor (Adiantum caudatum) adalah sejenis paku-pakuan yang termasuk dalam kelompok Adiantoid, anaksuku Vittariodeae, suku Pteridaceae. Spesies suplir ini berasal dari Asia tropis sampai subtropis, seperti Tiongkok, India, Sri Lanka, Malaysia, Indonesia, Filipina, dan Papua N...
Traditional biscuit in New Zealand Afghan (biscuit)TypeBiscuitPlace of originNew ZealandMain ingredientsflour, butter, sugar, cornflakes, cocoa powder, chocolate icing, walnut Media: Afghan (biscuit) An Afghan is a traditional New Zealand[1][2][3] biscuit made from flour, butter, cornflakes, sugar and cocoa powder, topped with chocolate icing and a half walnut. The recipe[4] has a high proportion of butter, and relatively low sugar, and no leavening (...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2021) عدم المساواة في الدخل في السويد تتمتع السويد بتفاوت منخفض نسبيًا في الدخل ولديها مستوى معيشة مرتفع. تم تقدير معدل البطالة اعتبارًا من عام 2017 بنسبة 6.6٪ من خلال...
Jalur Timur BaratJalur Timur Barat diwarna hijau di petaIkhtisarNama asliLaluan Timur BaratEast West Line东西地铁线கிழக்கு மேற்கு எம்ஆர்டி வழிJenisTransportasi Cepat MassalSistemMRT (Singapura)StatusOperasionalLokasiSingapuraTerminusPasir Ris Bandara ChangiTanah MerahTuas LinkStasiun35Layanan2OperasiDibuka12 Desember 1987PemilikLand Transport AuthorityOperatorSMRTKarakteristik lintasLayang (Pasir Ris–Kallang, Redhill–Tuas Link, Expo)Ba...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Siti Soendari (ketiga dari kiri) Siti Soendari adalah seorang aktivis perempuan dan wartawati asal Indonesia. Ia lahir di Nganjuk, Jawa Timur pada 9 April 1906 sebagai anak bungsu dari tujuh bersaudara dari pasangan Raden Soewadji dan Raden Ayu Soedarm...
Parvathy ThiruvothuParvathy pada 2018LahirParvathy Kottuvata[1]7 April 1988 (umur 35)[2]Kozhikode, Kerala, IndiaTempat tinggalKochi, Kerala, India[3]KebangsaanIndiaAlmamaterAll Saints College, ThiruvananthapuramPekerjaanAktris, presenter televisi Parvathy Thiruvothu Kottuvata (lahir 7 April 1988) adalah seorang aktris film India yang umumnya muncul dalam film-film Malayalam selain beberapa film Tamil, Kannada dan Hindi.[4] Berasal dari Kozhikode, Kerala, ...
Road in Boston, United States Not to be confused with Fenway Park. The Fenway redirects here. For other uses, see Fenway (disambiguation). FenwayMap with the Fenway highlighted in red.Maintained byDepartment of Conservation and RecreationLength1.1 mi (1.8 km)[1]LocationEmerald Necklace, Boston, MassachusettsWest endRiverway / Brookline Avenue in LongwoodEast endBoylston Street in Fenway–KenmoreConstructionInauguration1876 (1876)[2]OtherDesignerFreder...
Profil singkat| kontribusi | statistik | log |sub-halaman Hubungi saya| MediaWiki:Newmessageslink | email | arsip |irc: #id.wikipedia • #id.wiki Bak pasir pribadi| bak pasir Wikipedia | daftar warna | Pengguna ini sedang sibuk di dunia nyata dan mungkin tidak menanggapi pesan dengan cepat. Halo, Arwnips, selamat datang di Wikipedia bahasa Indonesia! Memulai Memulai Para pengguna baru dapat melihat halaman Pengantar Wikipedia terlebih dahulu. Anda bisa mengucapkan selamat datang ke...
Ice Hockey at the 1988 Winter Olympics 1988 Winter OlympicsIce HockeySoviet stamp for the Olympic ice hockey tournamentTournament detailsHost country CanadaVenue(s)Olympic SaddledomeStampede CorralFather David Bauer Olympic Arena (in 1 host city)DatesFebruary 13–28, 1988Teams12Final positionsChampions Soviet Union (7th title)Runner-up FinlandThird place SwedenFourth place CanadaTournament statisticsGames played42Goals scored316 ...
2012 video gameFinal Fantasy Airborne BrigadeDeveloper(s)Square Enix 1st Production DepartmentPublisher(s)Square EnixSeriesFinal FantasyPlatform(s)Mobile phones, iOS, Android[1]ReleaseJP: January 6, 2012NA: December 14, 2012Genre(s)Social role-playing video gameMode(s)Multiplayer Final Fantasy Airborne Brigade, known in Japan as Final Fantasy Brigade (ファイナルファンタジー ブリゲイド, Fainaru Fantajī Burigeido) was a Final Fantasy video game developed and published b...
Polish politician Grzegorz SchetynaSchetyna in 2019Acting President of PolandIn office8 July 2010 – 6 August 2010Prime MinisterDonald TuskPreceded byBogdan Borusewicz (Acting)Succeeded byBronisław KomorowskiChairman of Civic PlatformIn office26 January 2016 – 29 January 2020Secretary-GeneralStanisław GawłowskiRobert TyszkiewiczParliamentary LeaderSławomir NeumannBorys BudkaPreceded byEwa KopaczSucceeded byBorys BudkaMinister of Foreign AffairsIn office22 September 20...
South African Airways' first Airbus A350-900 arriving at John F. Kennedy International Airport in New York. As of December 2022[update] the airline does not serve this destination.[1] This is a list of South African Airways destinations, as of January 2024[update].[2] As of June 2016[update], South African Airways served eight destinations outside Africa. By that time, the top five international routes led from Johannesburg to New York C...
Power of Canada to govern itself The location of Canada The sovereignty of Canada is, in legal terms, the power of Canada to govern itself and its subjects; it is the ultimate source of Canada's law and order.[1] Sovereignty is also a major cultural matter in Canada.[2] Several matters currently define Canadian sovereignty: the Canadian monarchy, telecommunication, the autonomy of the provinces, and Canada's Arctic border. Canada is a constitutional monarchy. Though unitary, t...
Туроператор «Tуртранс-вояж» Тип бизнес Основание 1994 год Основатели Дмитрий Фоминцев Расположение Россия Ключевые фигуры Дмитрий Фоминцев, Геннадий Цирков Отрасль туризм Оборот 8 млн долларов[1] Число сотрудников 170 сотрудников офиса и 190 гидов[2]. Сайт tourtrans.ru Т...
Football league seasonHrvatski Telekom Prva ligaSeason2021–22Dates16 July 2021 – 21 May 2022ChampionsDinamo Zagreb (23rd Croatian title)RelegatedHrvatski DragovoljacChampions LeagueDinamo ZagrebEuropa Conference LeagueHajduk SplitOsijekRijekaMatches played180Goals scored504 (2.8 per match)Top goalscorerMarko Livaja (28)Biggest home winDinamo Zagreb 8–0 Hrvatski DragovoljacBiggest away winŠibenik 0–5 Hrvatski DragovoljacHighest scoringIstra 1961 3–6 RijekaLongest winning runDin...
For other uses, see Fidalgo (disambiguation). Portrait of a Young Fidalgo; a 16th-century rendition of a young Portuguese nobleman. Part of a series onImperial, royal, noble,gentry and chivalric ranks in Europe Emperor, Empress dowager Tsar, Tsarina High king, High queen King consort dowager Queen regnant consort dowager mother Grand duke, Grand duchess Archduke, Archduchess Prince consort Princess consort Duke, Duchess Crown prince, Crown princess Herzog Jarl Prince-elector, Princess-elector...
2003 studio album by James Blood UlmerNo Escape from the Blues: The Electric Lady SessionsStudio album by James Blood UlmerReleasedSeptember 9, 2003RecordedApril 23, 24 & 25, 2003GenreBluesLabelHyenaProducerVernon ReidJames Blood Ulmer chronology Memphis Blood: The Sun Sessions(2001) No Escape from the Blues: The Electric Lady Sessions(2003) Birthright(2004) No Escape from the Blues: The Electric Lady Sessions is an album by American guitarist James Blood Ulmer recorded in and rel...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 安田大サーカス – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2011年2月) 安田大(やすだだい)サーカス 大阪府・道...
Style of formal logical argumentation In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathemati...
ميّز عن شكل تربيعي. ميّز عن دالة رباعية. دالة تربيعية A كثير حدود تربيعيّ ذو جذرين حقيقيَّين (نقاط تقاطع الرسم البياني مع المحور x) وبالتالي لا يوجد جذور عُقَدِيّة. بعض كثيرات الحدود التربيعيّة تمتلك قيماً صُغرى فوق المحور x، وفي هذه الحالة لا يوجد للدالة جذور حق�...