Magnetostratigraphy

Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their characteristic remanent magnetization (ChRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. This is possible because volcanic flows acquire a thermoremanent magnetization and sediments acquire a depositional remanent magnetization, both of which reflect the direction of the Earth's field at the time of formation. This technique is typically used to date sequences that generally lack fossils or interbedded igneous rock. It is particularly useful in high-resolution correlation of deep marine stratigraphy where it allowed the validation of the Vine–Matthews–Morley hypothesis related to the theory of plate tectonics.

Technique

When measurable magnetic properties of rocks vary stratigraphically they may be the basis for related but different kinds of stratigraphic units known collectively as magnetostratigraphic units (magnetozones).[1] The magnetic property most useful in stratigraphic work is the change in the direction of the remanent magnetization of the rocks, caused by reversals in the polarity of the Earth's magnetic field. The direction of the remnant magnetic polarity recorded in the stratigraphic sequence can be used as the basis for the subdivision of the sequence into units characterized by their magnetic polarity. Such units are called "magnetostratigraphic polarity units" or chrons.[2]

If the ancient magnetic field was oriented similar to today's field (North Magnetic Pole near the Geographic North Pole) the strata retains a normal polarity. If the data indicates that the North Magnetic Pole was near the Geographic South Pole, the strata exhibits reversed polarity.

Polarity chron

Units in geochronology and stratigraphy[3]
Segments of rock (strata) in chronostratigraphy Time spans in geochronology Notes to
geochronological units
Eonothem Eon 4 total, half a billion years or more
Erathem Era 10 defined, several hundred million years
System Period 22 defined, tens to ~one hundred million years
Series Epoch 34 defined, tens of millions of years
Stage Age 99 defined, millions of years
Chronozone Chron subdivision of an age, not used by the ICS timescale

A polarity chron, or in context chron,[4] is the time interval between polarity reversals of Earth's magnetic field.[5] It is the time interval represented by a magnetostratigraphic polarity unit. It represents a certain time period in geologic history where the Earth's magnetic field was in predominantly a "normal" or "reversed" position. Chrons are numbered in order starting from today and increasing in number into the past. As well as a number, each chron is divided into two parts, labelled "n" and "r", thereby showing the position of the field's polarity. Chrons are also referred by a capital letter of a reference sequence such as "C". A chron is the time equivalent to a chronozone or a polarity zone.

It was called a "polarity subchron" when the interval is less than 200,000 years long,[5] although the term was redefined in 2020 to an approximate duration between 10,000 to 100,000 years and polarity chron for an approximate duration between 100,000 years and a million years.[6] Other terms used are Megachron for a duration between 108 and 109 years, Superchron for a duration between 107 and 108 years and Crytochron for a duration less than 3×104 years.[6]

Chron nomenclature

The nomenclature for the succession of polarity intervals, especially when changes are of short durations, or not universal (the earth's magnetic field is complex) is challenging, as each new discovery has to be inserted (or if not validated, removed). The two standardised marine magnetic anomalies sequences are the "C-sequence" and "M-sequence" and cover from the Middle Jurassic to date.[7] Accordingly the main C polarity chrons series extend backwards from the current C1n, commonly termed Brunhes, with the most recent transition at C1r, commonly termed Matuyama, at 0.773 Ma which is the Brunhes–Matuyama reversal. The C (for Cenozoic) sequence ends in the Cretaceous Normal Superchron termed C34n which on age calibration occurred at 120.964 Ma and lasted to Chron C33r at 83.650  Ma that defined the Santonian geologic age.[8] The M series is defined from M0, with full label M0r, at 121.400 Ma, which is the beginning of the Aptian to M44n.2r which is before 171.533 Ma in the Aalenian.[9]

Subdivisions in the sequencies also have specific nomenclature so C8n.2n is the second oldest normal polarity subchron comprising normal-polarity Chron C8n and the youngest cryptochron, the Emperor cryptochron, is named C1n-1.[10] Certain terms in the literature such as M-1r to describe a postulated brief reversal at about 118 Ma are provisional.[9]

Sampling procedures

Oriented paleomagnetic samples are collected in the field using a rock core drill, or as hand samples (chunks broken off the rock face). To average out sampling errors, a minimum of three samples is taken from each sample site.[11] Spacing of the sample sites within a stratigraphic section depends on the rate of deposition and the age of the section. In sedimentary layers, the preferred lithologies are mudstones, claystones, and very fine-grained siltstones because the magnetic grains are finer and more likely to orient with the ambient field during deposition.[2]

Analytical procedures

Samples are first analyzed in their natural state to obtain their natural remanent magnetization (NRM). The NRM is then stripped away in a stepwise manner using thermal or alternating field demagnetization techniques to reveal the stable magnetic component.

Magnetic orientations of all samples from a site are then compared and their average magnetic polarity is determined with directional statistics, most commonly Fisher statistics or bootstrapping.[11] The statistical significance of each average is evaluated. The latitudes of the Virtual Geomagnetic Poles from those sites determined to be statistically significant are plotted against the stratigraphic level at which they were collected. These data are then abstracted to the standard black and white magnetostratigraphic columns in which black indicates normal polarity and white is reversed polarity.

Correlation and ages

Geomagnetic polarity in late Cenozoic
  normal polarity (black)
  reverse polarity (white)

Because the polarity of a stratum can only be normal or reversed, variations in the rate at which the sediment accumulated can cause the thickness of a given polarity zone to vary from one area to another. This presents the problem of how to correlate zones of like polarities between different stratigraphic sections. To avoid confusion at least one isotopic age needs to be collected from each section. In sediments, this is often obtained from layers of volcanic ash. Failing that, one can tie a polarity to a biostratigraphic event that has been correlated elsewhere with isotopic ages. With the aid of the independent isotopic age or ages, the local magnetostratigraphic column is correlated with the Global Magnetic Polarity Time Scale (GMPTS).[1]

Because the age of each reversal shown on the GMPTS is relatively well known, the correlation establishes numerous time lines through the stratigraphic section. These ages provide relatively precise dates for features in the rocks such as fossils, changes in sedimentary rock composition, changes in depositional environment, etc. They also constrain the ages of cross-cutting features such as faults, dikes, and unconformities.

Sediment accumulation rates

Perhaps the most powerful application of these data is to determine the rate at which the sediment accumulated. This is accomplished by plotting the age of each reversal (in millions of years ago) vs. the stratigraphic level at which the reversal is found (in meters). This provides the rate in meters per million years which is usually rewritten in terms of millimeters per year (which is the same as kilometers per million years).[2]

These data are also used to model basin subsidence rates. Knowing the depth of a hydrocarbon source rock beneath the basin-filling strata allows calculation of the age at which the source rock passed through the generation window and hydrocarbon migration began. Because the ages of cross-cutting trapping structures can usually be determined from magnetostratigraphic data, a comparison of these ages will assist reservoir geologists in their determination of whether or not a play is likely in a given trap.[12]

Changes in sedimentation rate revealed by magnetostratigraphy are often related to either climatic factors or to tectonic developments in nearby or distant mountain ranges. Evidence to strengthen this interpretation can often be found by looking for subtle changes in the composition of the rocks in the section. Changes in sandstone composition are often used for this type of interpretation.

Siwalik magnetostratigraphy

The Siwalik fluvial sequence (~6000 m thick, ~20 to 0.5 Ma) represents a good example of magnetostratigraphy application in resolving confusion in continental fossil based records.[13]

See also

Notes

  1. ^ a b Opdyke & Channell 1996, Chapter 5
  2. ^ a b c Butler 1992, Chapter 9
  3. ^ Cohen, K.M.; Finney, S.; Gibbard, P.L. (2015), International Chronostratigraphic Chart (PDF), International Commission on Stratigraphy.
  4. ^ Ogg 2020, p160 notes potential ambiguity as 'Chron in the International Stratigraphic Guide designates a formal subdivision of a geologic stage'
  5. ^ a b Marshak, Stephen, 2009, Essentials of Geology, W. W. Norton & Company, 3rd ed. ISBN 978-0393196566
  6. ^ a b Ogg 2020, p161 Table 5.1
  7. ^ Ogg 2020, p161
  8. ^ Ogg 2020, Table 5.2 Named geomagnetic excursions and major polarity chrons of Quaternary, Table 5.3: C-sequence marine magnetic anomaly distances and age model
  9. ^ a b Ogg 2020, Table 5.4: M-sequence marine magnetic anomaly distances and age calibration
  10. ^ Ogg 2020, p164
  11. ^ a b Tauxe 1998, Chapter 3
  12. ^ Reynolds 2002
  13. ^ Dennell, R; Coard, R; Turner, A (2006). "The biostratigraphy and magnetic polarity zonation of the Pabbi Hills, northern Pakistan: an upper Siwalik (Pinjor stage) upper Pliocene–Lower Pleistocene fluvial sequence" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 234 (2–4): 168–85. doi:10.1016/j.palaeo.2005.10.008.

References

Read other articles:

NGC 5272Data pengamatan (J2000 epos)KelasVIAsensio rekta 13j 42m 11.23d[1]Deklinasi 28° 22′ 31.6″[1]Jarak33,9 ktc (10,4 kpc)Magnitudo tampak (V)+6,2[1]Dimensi tampak (V)18′,0Karakteristik fisikMagnitudo mutlak-8,93Massa245.000 M☉ (4,87 x 1035 kg)Radius90 tcVHB-Perkiraan umur8 miliar tahunFitur penting-Nama lainNGC 5272[1]Lihat pula: Gugus bola, Daftar gugus bola Messier 3 (juga dikenal sebagai M3 atau NGC 52...

 

Beth GrantGrant di panel PaleyFest 2013 untuk The Mindy ProjectLahir18 September 1949 (umur 74)Gadsden, Alabama, ASTempat tinggalValley Village, California, ASAlmamaterEast Carolina UniversityPekerjaanAktrisTahun aktif1979–sekarangSuami/istriMichael ChieffoAnakMary Chieffo Beth Grant (lahir 18 September 1949)[1] adalah seorang pemeran asal Amerika. Antara 2012 dan 2017, ia menjadi pemeran reguler dalam serial komedi televisi The Mindy Project dengan memerankan peran Bever...

 

Pour les articles homonymes, voir Chef de l'opposition. Chef de l'opposition officielle(en) Leader of His Majesty's Most Loyal Opposition Armoiries royales du Royaume-Uni Titulaire actuelKeir Starmerdepuis le 4 avril 2020(3 ans, 11 mois et 25 jours) Création 1er juillet 1939 (officielle) Titre Le Très honorable Premier titulaire William Grenville Site internet labour.org.uk modifier  Le chef de la très loyale opposition de Sa Majesté (en anglais : Leader of His M...

Basketball player and coach (born 1962) Kim MulkeyMulkey in 2024Current positionTitleHead coachTeamLSUConferenceSECRecord91–14 (.867)Biographical detailsBorn (1962-05-17) May 17, 1962 (age 61)Santa Ana, California, U.S.Playing career1980–1984Louisiana Tech1983–1984USA National Team Position(s)Point guardCoaching career (HC unless noted)1985–1996Louisiana Tech (assistant)1996–2000Louisiana Tech (associate HC)2000–2021Baylor2021–presentLSU Head coaching recordOverall723–118...

 

This article is about the Japanese television station. For the company that owns it, see Mainichi Broadcasting System. You can help expand this article with text translated from the corresponding article in Japanese. (March 2016) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Learjet 25 – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this template message) Learjet 25 A NASA Learjet 25 Role Business jetType of aircraft National origin United States Manufacturer Learjet First flight August 12, 19...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Questa voce o sezione sull'argomento politici italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento politici italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Cesare Angelini Sen...

اضطراب الشخصية معلومات عامة الاختصاص طب نفسي،  وعلم النفس  من أنواع اضطراب نفسي،  ومرض  الإدارة أدوية كويتيابين،  وأريبيبرازول،  وريسبيريدون  حالات مشابهة اضطراب الهوية التفارقي  تعديل مصدري - تعديل   اضطراب الشخصية الفئة أ (الغريبة) زوراني شبه فصام�...

 

  لمعانٍ أخرى، طالع رايموند (توضيح). رايموند   الإحداثيات 39°19′15″N 89°34′28″W / 39.3208°N 89.5744°W / 39.3208; -89.5744   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة مونتغومري  خصائص جغرافية  المساحة 1.32 ميل مربع  ارتفاع 639 قدم  ع�...

 

Chimalpopoca pada Codex Mendoza. Chimalpopoca (Nahuatl untuk perisai berasap; 1397–1427) adalah tlatoani ketiga Tenochtitlan, Aztek (1417-1427). Ia naik tahta pada usia 20 tahun. Jabatan tlatoani Chimalpopoca diteruskan oleh Itzcoatl. Referensi Azcapotzalco, Enciclopedia de México, vol. 2. Mexico City: 1987. (Spanyol) Chimalpopoca, Enciclopedia de México, vol. 4. Mexico City: 1987. (Spanyol) García Puron, Manuel, México y sus gobernantes, vol. 1. Mexico City: Joaquín Porrua, 1984. (Spa...

2020年夏季奥林匹克运动会印度尼西亚代表團印度尼西亚国旗IOC編碼INANOC印尼奧林匹克委員會網站nocindonesia.id(英文)(印尼文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員28參賽項目8个大项旗手开幕式:和井田理央(英语:Rio Waida)(冲浪)[1]闭幕式:东京奥组委志愿者[2]獎牌榜排名第55 ...

 

محدث الحسن بن موسى الأشيب معلومات شخصية اسم الولادة الحسن بن موسى تاريخ الميلاد 133 هـ الوفاة 209 هـالري الإقامة الري - بغداد مواطنة  الدولة العباسية الكنية أبو علي البغدادي الديانة الإسلام الطائفة أهل السنة والجماعة الحياة العملية العصر العصر العباسي الأول تعلم لدى حماد ...

 

هذه قائمة سفراء وممثلي ومندوبي منظمة التحرير الفلسطينية والسلطة الوطنية الفلسطينية (لاحقًا دولة فلسطين) لدى الدول والمنظمات والهيئات العالمية: السفراء حسب القارة آسيا الدولة المُضيفة الاسم صورة مستوى التمثيل تاريخ الاعتماد الدبلوماسي ملاحظات مراجع  الإمارات العربية ...

Yates Thompson 36manoscrittoEpoca1444-1450 Linguavolgare ProvenienzaToscana Supportopergamena Scritturagotico Dimensioni36,5 × 25,8 cm Fogli190 UbicazioneBritish Library ManualeIl Manoscritto Yates Thompson 36 (ms. Yates Thompson 36) è un codice della Divina Commedia di Dante Alighieri conservato alla British Library di Londra. Indice 1 Storia e descrizione 2 Note 3 Voci correlate 4 Collegamenti esterni Storia e descrizione Realizzato tra il 1444 e il 1450 per volontà del re...

 

Metaphysical concept, unchanging Ultimate Reality in Hinduism Not to be confused with Brahma (the Hindu god), Brahmin (varna), Brahmana (a layer of text in the Vedas), Parabrahman (the Supreme Brahman), Brahmanism (the religion), or American Brahman (cow raised for meat). For other uses, see Brahman (disambiguation). Om signifies the essence of Brahman, the ultimate reality. A drop in the ocean: an analogy for Ātman merging into Brahman. Part of a series onHinduism Hindus History OriginsHist...

 

International award for affirming life's spiritual dimension AwardTempleton PrizeBernard d'Espagnat receiving the Templeton Prize from the Duke of Edinburgh in 2009Awarded forOutstanding contributions in affirming life's spiritual dimension, whether through insight, discovery, or practical worksCountryUnited StatesPresented byTempleton FoundationReward(s)£1.1 million (2019)First awarded1973Currently held byPumla Gobodo-MadikizelaWebsitetempletonprize.org The Templeton Prize is an annual awar...

متحف الرقةمعلومات عامةنوع المبنى متحف المنطقة الإدارية الرقة البلد  سوريا أبرز الأحداثالافتتاح الرسمي 1981 معلومات أخرىموقع الويب cdli.ucla.edu… الإحداثيات 35°56′45″N 39°01′00″E / 35.9458°N 39.0167°E / 35.9458; 39.0167 تعديل - تعديل مصدري - تعديل ويكي بيانات 35°56′45″N 39°1′00″E / ࿯...

 

アル・ブラク 運航車両のONCF Alstom RGV2N2(タンジェ、2018年11月)基本情報国 モロッコ種類 高速鉄道起点 カサ・ヴォヤジャー駅終点 タンジェ・ヴィル駅駅数 4駅[1]開業 2018年11月15日所有者 ONCF(モロッコ国営鉄道)運営者 ONCF(モロッコ国営鉄道)使用車両 ユーロデュプレックス路線諸元路線距離 323 km軌間 1,435 mm(標準軌)線路数 複線電化方式 交流3,000 V・50 Hz架空...