In molecular biology, the Macro domain (often also written macrodomain) or A1pp domain is an ancient, evolutionary conserved structural module found in all kingdoms of life as well as some viruses.[1] Macro domains are modules of about 180 amino acids that can bind ADP-ribose, an NADmetabolite, or related ligands. Binding to ADP-ribose can be either covalent or non-covalent:[2] in certain cases it is believed to bind non-covalently,[3] while in other cases (such as Aprataxin) it appears to bind both non-covalently through a zinc finger motif, and covalently through a separate region of the protein.[4]
Function
The domain was described originally in association with the ADP-ribose 1-phosphate (Appr-1-P)-processing activity (A1pp) of the yeast YBR022W protein and called A1pp.[5] However, the domain has been renamed Macro as it is the C-terminal domain of mammalian core histone macro-H2A.[6][7] Macro domain proteins can be found in eukaryotes, in (mostly pathogenic) bacteria, in archaea and in ssRNA viruses, such as coronaviruses, Rubella and Hepatitis E viruses. In vertebrates the domain occurs in e.g. histone macroH2A, predicted poly-ADP-ribose polymerases (PARPs) and B aggressive lymphoma (BAL) protein. Zinc-containing macro domains (Zn-Macros) are primarily encountered in pathogenic microorganisms and have structurally distinct features from other macro domains, which include their function being strictly dependent on a catalytic zinc within the active site.[8][9]
ADP-ribosylation of DNA is relatively uncommon and has only been described for a small number of toxins that include pierisin,[15] scabin[16] and DarT.[17][18] The Macro domain from the antitoxin DarG of the toxin-antitoxin system DarTG, both binds and removes the ADP-ribose modification added to DNA by the toxin DarT.[17][18] The Macro domain from human, macroH2A1.1, binds an NAD metabolite O-acetyl-ADP-ribose.[19]
^Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (November 1999). "A biochemical genomics approach for identifying genes by the activity of their products". Science. 286 (5442): 1153–5. doi:10.1126/science.286.5442.1153. PMID10550052.
^Aravind L (May 2001). "The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation". Trends Biochem. Sci. 26 (5): 273–5. doi:10.1016/s0968-0004(01)01787-x. PMID11343911.
^ abAllen MD, Buckle AM, Cordell SC, Löwe J, Bycroft M (July 2003). "The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A". J. Mol. Biol. 330 (3): 503–11. doi:10.1016/S0022-2836(03)00473-X. PMID12842467.