Lucius Valerius Potitus (consul 483 BC)

Lucius Valerius Potitus was a Roman politician and general in the beginning of the Roman republic. He was the son of Marcus Valerius Volusus, who was consul in 505 BC.[1] He held the office of quaestor parricidii in 485 BC in connection with the trial and execution of Spurius Cassius Vecellinus.[2] His role in the trial of Cassius made Valerius unpopular with the plebs, and yet the Roman Senate succeeded in having Valerius elected consul in 483 BC and again in 470 BC.[3]

According to Livy, during Valerius' first consulship in 483 BC the tribunes continued their attempts to increase their powers, but were at that time successfully resisted by the Roman Senate.[2] In his second consulship in 470 BC Valerius led Roman troops against the Aequi. He unsuccessfully attempted to lead an assault on the Aequian army camp, and instead ravaged the Aequian territory.[4]

In 464 BC there were hostilities with the Aequi again and as both consuls were absent from Rome conducting the war, a justitium was declared. Valerius was appointed praefectus urbi and was left in charge of defending the city.[5][6]

See also

References

  1. ^ William Smith, Dictionary of Greek and Roman Biography and Mythology
  2. ^ a b Livy, Ab urbe condita, 2.41
  3. ^ Livy, 2.42
  4. ^ Livy, 2.62
  5. ^ Livy, 3.4-5
  6. ^ Broughton, vol i, pp.34
Political offices
Preceded by Consul of the Roman Republic
with Marcus Fabius Vibulanus
483 BC
Succeeded by
Preceded by Consul of the Roman Republic
with Tiberius Aemilius Mamercinus (consul 467 BC)
470 BC
Succeeded by

Read other articles:

Janger PersahabatanSingel oleh NEV+, Ariel NOAH, dan Deadari album Asian Games 2018: Energy of AsiaDirilis11 Mei 2018Direkam2017–2018GenrePop, Rock EDMDurasi3:56LabelMusica Studio'sPenciptaGuruh SoekarnoputraProduserNEV+Kronologi singel NEV+ Cinta 99% (Remix) (2018) Janger Persahabatan (2018) Kronologi singel Ariel NOAH Bright As The Sun(2017) Janger Persahabatan(2018) もしもまたいつか - Moshimo Mata Itsuka (Mungkin Nanti)(2019) Kronologi singel Dea Cinta 99% (Remix)(...

 

1st century CE High Priest of Israel Mattathias ben Theophilusמתתיהו בן תאופילוסBornJerusalem, Judea, Roman EmpireDiedc. AD 66Jerusalem, Judea, Roman EmpireParentTheophilus Part of a series of articles onPriesthood in Judaism  KohenPresumption of priestly descentPriestly covenant RolesPriestly BlessingRedemption of the firstborn sonTzaraath (skin disease and mildew)The Torah instruction of the KohanimSacrificeIncense offeringBeth din shel KohanimPriestly divisions H...

 

Letak Fengshun dalam peta Guangdong Fengshun (Hakka:Fûng-sun-yen) adalah sebuah kabupaten yang terletak di bagian selatan Kota Meizhou, Guangdong. Kabupaten Fengshun didiami mayoritas (90%) oleh Orang Hakka, minoritas Suku She dan Orang Chaozhou. Awalnya Fengshun masuk ke dalam wilayah pemerintahan Kota Chaozhou, namun kemudian digabungkan ke dalam Kota Meizhou sejak tahun 1988. Bagian selatan kabupaten berbatasan dengan Jieyang dan Shantou, bagian timur dengan Chaozhou. Informasi Luas: 2.71...

Automated Media Production This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Database publishing – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this template message) Not to be confused with Data publishing. For the company formerly known as Database Publications, see Europress. Database...

 

Fictional character Bill BergsonThe character's hometown Lillköping is inspired by VimmerbyFirst appearance1946 (1946)Created byAstrid LindgrenIn-universe informationGendermale Bill Bergson (Swedish: Kalle Blomkvist) is a fictional character created by Swedish writer Astrid Lindgren. The first book featuring him was published in 1946.[1] Lindgren's detective story is about Bill Bergson, a more-or-less ordinary Swedish boy with an extraordinary fascination with detective work. He...

 

Historic region of the Czech Republic For the village in eastern Poland, see Zaolzie, Lublin Voivodeship. Territorial evolution of Polandin the 20th century Pre-World War II Revolution in Congress Poland (1905–1907) Ostrowiec Republic Zagłębie Republic Separation of Kholm Governorate from Congress Poland and annexation into Russian Kiev General Governorate (1913) Act of 5th November by the Central Powers proclaiming Kingdom of Poland (1916) Central Powers-Ukrainian People's Republic/Ukrai...

若纳斯·萨文比Jonas Savimbi若纳斯·萨文比,摄于1990年出生(1934-08-03)1934年8月3日 葡屬西非比耶省Munhango(葡萄牙語:Munhango)逝世2002年2月22日(2002歲—02—22)(67歲) 安哥拉莫希科省卢库塞效命 安哥拉民族解放阵线 (1964–1966) 争取安哥拉彻底独立全国联盟 (1966–2002)服役年份1964 – 2002军衔将军参与战争安哥拉独立战争安哥拉內戰 若纳斯·马列罗·萨文比(Jonas Malheiro Savimbi,1...

 

1987 anime film Neo TokyoJapanese theatrical posterJapanese nameKanji迷宮物語TranscriptionsRevised HepburnMeikyū Monogatari Directed by Rintaro (Labyrinth Labyrinthos) Yoshiaki Kawajiri (The Running Man) Katsuhiro Otomo (Construction Cancellation Order) Written by Rintaro (Labyrinth Labyrinthos) Yoshiaki Kawajiri (The Running Man) Katsuhiro Otomo (Construction Cancellation Order) Based onMeikyū Monogatariby Taku MayumuraProduced byMasao MaruyamaRintaroStarring Hideko Yoshida Masane Tsuk...

 

Preceptory in Leicestershire, England Rothley PreceptoryThe Templar Chapel built c.1240; incorporated into a later buildingLocation within LeicestershireMonastery informationOther namesRothley TempleOrderKnights Templar From 1313: Knights HospitallerEstablishedc.1231Disestablished1540Mother housefrom c.1371: Dalby PreceptorySiteLocationRothley, LeicestershireCoordinates52°42′20″N 1°08′52″W / 52.7056°N 1.1478°W / 52.7056; -1.1478Visible remainsThe Preceptory...

S&P Global Inc.Kantor pusat di 55 Water StreetSebelumnyaMcGraw–Hill, Inc. (1964–1995)The McGraw–Hill Companies, Inc. (1995–2013)McGraw Hill Financial, Inc. (2013–2016)JenisPublikKode emitenNYSE: SPGIKomponen S&P 500IndustriJasa keuanganPendahuluThe McGraw–Hill Book/Publishing Companies (sebelumnya The McGraw Publishing Company dan The Hill Book Company)Didirikan1917; 107 tahun lalu (1917)PendiriJames H. McGrawJohn A. HillKantorpusat55 Water Street, Manhattan, New York...

 

Algorithm Symmetric-key encryption: the same key is used for both encryption and decryption Symmetric-key algorithms[a] are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys.[1] The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private informa...

 

Tindik puting pria. Tindik puting wanita. Tindik puting adalah suatu tindik yang terdapat pada puting susu. Tindik tersebut dapat dibuat secara horizontal atau vertikal, dan dapat memakai berbagai jenis anting berbentuk barbel, cincin, dan sebagainya. Memungkinkan pula untuk membuat lebih dari satu tindikan pada satu puting. Tindik puting dapat dibuat karena berbagai alasan, baik dari sisi penampilan, medis, atau pun seksualitas. Untuk beberapa wanita yang puting susunya masuk ke dalam, prose...

Massiccio del Monte RosaVersante piemontese del massiccio visto dalla zona delle Alpi biellesi: a sinistra, la parete valsesiana, a destra, la parete est.ContinenteEuropa Stati Italia Svizzera Cima più elevataPunta Dufour (4 634 m s.l.m.) Massicci principaliCatena Breithorn-Lyskamm (1)Massiccio del Monte Rosa (2)Gruppo della Cima di Jazzi (3) Il Monte Rosa (o Massiccio del Monte Rosa[1], Monte Rosa o Monte-Rosa-Massiv in tedesco; Mont Rose o Massif du mont Ro...

 

ÉlectrochimieSchéma de la synthèse d'hydrogène et d'oxygène par électrolyse de l'eau.Partie de Chimie physiquePratiqué par Électrochimiste (d)Histoire Histoire de l'électrochimiemodifier - modifier le code - modifier Wikidata L’électrochimie est la discipline scientifique qui s’intéresse aux relations entre la chimie et l’électricité. Elle décrit les phénomènes chimiques couplés à des échanges réciproques d’énergie électrique. L'électrochimie comprend toutes tec...

 

Patent law Overviews Patent Patent claim History Economics Criticism Procedural concepts Application Prosecution Opposition Valuation Licensing Infringement Patentability requirements and related concepts Patentable subject matter Inventorship Novelty Inventive step and non-obviousness Industrial applicability Utility Person skilled in the art Prior art Other legal requirements Sufficiency of disclosure Unity of invention By region / country Patent Cooperation Treaty (PCT) Australia ...

Alfred ApakaBackground informationBirth nameAlfred Aholo Apaka Jr.Born(1919-03-19)March 19, 1919Honolulu, HawaiiDiedJanuary 30, 1960(1960-01-30) (aged 40)Honolulu, Hawaii, USGenresHawaiian Traditional pop Hapa haole music StandardsOccupation(s)SingerInstrument(s)Voice, BaritoneYears active1938–1960LabelsDecca, Bell Records, Aloha Records, Capitol, Hawaiian Village, ABC-ParamountFormerly ofHawaii Calls Benny Kalama Sonny Burke Rosalie StephensonMusical artist Alfred Aholo Apaka, Jr. (Ma...

 

1871 1877 Élections législatives de 1876 dans la Sarthe 1876 Corps électoral et résultats Inscrits 125 168 2d tour   81,89 % Républicains Liste Républicains modérésRépublicains conservateurs Voix au 1er tour 52 240 50,07 %  Voix au 2e tour 14 950 47,45 %  Sièges obtenus 3 Monarchistes Liste LégitimistesBonapartistesOrléanistes, Centre droit Voix au 1er tour 52 098 49,93 %  Voix au 2e tour 16 286 51,69&#...

 

American politician Chauncey LangdonMember of the United States House of Representatives from Vermont's At-large districtIn officeMarch 4, 1815 – March 3, 1817Preceded byJames FiskSucceeded byCharles RichMember of the Vermont House of RepresentativesIn office1813–181418171819–18201822 Personal detailsBorn(1763-11-08)November 8, 1763Farmington, Connecticut Colony, British AmericaDiedJuly 23, 1830(1830-07-23) (aged 66)Castleton, Vermont, U.S.Political partyFederalist Party (...

Architectural and decorative style For the scale model, see Louis Quinze (ship model). Oval salon of the Hôtel de Soubise (now Archives Nationales), Paris (1735–1740) The Louis XV style or Louis Quinze (/ˌluːi ˈkæ̃z/, French: [lwi kɛ̃z]) is a style of architecture and decorative arts which appeared during the reign of Louis XV. From 1710 until about 1730, a period known as the Régence, it was largely an extension of the Louis XIV style of his great-grandfather and predecess...

 

Ada banyak permasalahan matematika yang telah dinyatakan tetapi belum ada yang terpecahkan. Masalah tersebut berasal dari cabang-cabang matematika seperti fisika, ilmu komputer, aljabar, analisis, kombinatorika, geometri aljabar, geometri diferensial, geometri diskret, geometri Euklides, teori graf, teori grup, teori model, teori bilangan, teori himpunan, teori Ramsey, sistem dinamika, dan persamaan diferensial parsial. Beberapa masalah dapat dikelompokkan dan dipelajari dalam banyak bidang i...