List of United States Supreme Court cases by the Rutledge Court |
Read other articles:
H.MHartopoDr., S.T., M.M., M.H. Bupati Kudus ke-38Masa jabatan9 April 2021 (29 Juli 2019-8 April 2021 sebagai pelaksana tugas) – 24 September 2023PresidenJoko WidodoGubernurGanjar Pranowo Nana Sudjana (Pj.) PendahuluMuhammad TamzilPenggantiBergas Catursasi PenanggunganWakil Bupati Kudus ke-4Masa jabatan24 September 2018 – 26 Juli 2019PresidenJoko WidodoGubernurGanjar PranowoBupatiMuhammad Tamzil PendahuluAbdul HamidPengganti- Informasi pribadiLahir10 Agustus 1967...
Jan Hendrik Weissenbruch, karya Jozef Israëls (1882) Jan Hendrik Weissenbruch, juga dikenal sebagai Hendrik Johannes Weissenbruch (19 Juni 1824 – 24 Maret 1903) adalah seorang pelukis Belanda dari Aliran Den Haag. Ia dikenal karena karya-karya warna cairnya. Daftar pustaka Sillevis, John & Tabak, Anne. The Hague School Book, Waanders Uitgegevers, Zwolle (2004), pp. 229–237 Leeuw, Ronald de; Sillervis, John and Dumas, Charles (1983): The Hague School: Dutch Masters ...
Municipality in Quezon, Philippines Not to be confused with Mulaney. Municipality in Calabarzon, PhilippinesMulanayMunicipalityMunicipality of MulanayMulanay Church FlagSealMap of Quezon with Mulanay highlightedOpenStreetMapMulanayLocation within the PhilippinesCoordinates: 13°31′20″N 122°24′15″E / 13.5222°N 122.4042°E / 13.5222; 122.4042CountryPhilippinesRegionCalabarzonProvinceQuezonDistrict 3rd districtFoundedFebruary 4, 1745Barangays28 (see Barangays)Go...
Unbiunium Unbinilium ← Unbiunium → Unbibium— 121 Ubu ...
Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Calcio Fanfulla 1874. Associazione Sportiva FanfullaStagione 1962-1963Sport calcio Squadra Fanfulla Allenatore Fausto Braga Presidente Ennio Paleari Serie C7° Maggiori presenzeCampionato: Vaglia (34) Miglior marcatoreCampionato: Spelta (11) 1961-196...
US Army post in New Mexico and Texas, US For the film, see Fort Bliss (film). This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (October 2023) (Learn how and when to remove this message) Fort BlissPart of Army Forces Command (FORSCOM)El Paso County, Texas and Doña Ana / Otero counties, New Mexico, Southwestern Uni...
Giorno dell'Unità nazionaleSergio Mattarella rende omaggio al Milite Ignoto (4 novembre 2022)Tiponazionale Data4 novembre[1] Celebrata in Italia Oggetto della ricorrenzaVittoria dell'Italia nella prima guerra mondiale e completamento dell'unità nazionale Ricorrenze correlateFesta del Tricolore (7 gennaio)Anniversario dell'Unità d'Italia (17 marzo)Anniversario della liberazione d'Italia (25 aprile)Festa della Repubblica Italiana (2 giugno) Data d'istituzione1922 Altri nomi...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
Business magazine This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Strategy+Business – news · newspapers · books · scholar · JSTOR (September 2019) (Learn how and when to remove this message) strategy+businessEditorDaniel Gross (2020-present)Art Kleiner (2005-January 2020)Randall Rothenberg (2000–2005)Joel Kurtzman (1995–1999)CategoriesFinance; innov...
تقسيم الأراضي بين النمسا والمجر: باللون الوردي الأراضي التي تُدار من فيينا، وباللون الأزرق الأراضي التي تُدار من بودابست طبقا لاتفاقية الحكم الثنائي لعام 1867. بدءًا من عام 1878 أصبحت المنطقة باللون الأخضر تدار من البوسنة والهرسك. التسوية النمساوية المجرية عام 1867 (بالألمانية:...
This article is about Banach bundles in differential geometry. For Banach bundles in non-commutative geometry, see Banach bundle (non-commutative geometry). In mathematics, a Banach bundle is a vector bundle each of whose fibres is a Banach space, i.e. a complete normed vector space, possibly of infinite dimension. Definition of a Banach bundle Let M be a Banach manifold of class Cp with p ≥ 0, called the base space; let E be a topological space, called the total space; let π : E → ...
Currency of the Kingdom of Sicily 1805 Sicilian piastra coin The piastra was the distinct currency of the Kingdom of Sicily until 1815. History See also: History of coins in Italy In order to distinguish it from the piastra issued on the mainland Kingdom of Sicily (also known as the Kingdom of Naples), it is referred to as the Sicilian piastra as opposed to the Neapolitan piastra. These two piastra were equal, but were subdivided differently. The Sicilian piastra was subdivided into 12 tarì,...
Mainframe computer systems made by IBM through the 1950s and early 1960s IBM 700/7000 seriesAn IBM 704 mainframe at NACA in 1957TypeMainframe/scientific computerRelease date1953; 71 years ago (1953)SuccessorIBM 8000 (not released) IBM System/360RelatedIBM 1400 series History of IBM mainframes, 1952–present Market name 700/7000 series 1400 series System/360 System/370 30XX series (303X, 308X, 3090) System/390 eServer zSeries (900, 800; 990, 890) System z9 System z10 zEnterp...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Quesnel Highland – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message) Quesnel HighlandHighlandsApproximate boundary of the Quensel HighlandCoordinates: 52°30′00″N 121°00′00″W / 52.50...
Sect of Ismaili Shia Islam Dawoodi Bohra داؤوْدِي بُهرة Dawoodi Bohra family in their religious attire.Total population1,000,000[1]–2,000,000[2]2021Regions with significant populations India500,000–1,000,000[3][4]ReligionsShi'a IslamScripturesQuranLanguages Predominantly spoken: Lisan al-DawatEnglishGujaratiHindiUrdu Historical: Arabic Sacred: Classical Arabic Related ethnic groups Shi'a: FiversTwelvers Ismailis: DruzeNizariQarmati Mustaal...
1944–1945 war between Finland and Germany Lapland WarPart of the Eastern Front of World War IIA sign which the Germans left in Muonio, Lapland, written on it: 'As thanks for not demonstrating brotherhood in arms!'Date 15 September 1944 – 27 April 1945 (7 months, 1 week and 5 days) LocationSuursaari (Gogland) and LaplandResult Finnish victoryBelligerents Germany FinlandMinor air support: Soviet Union[a]Commanders and leaders Lothar Rendulic Mathias Kräutler Aug...
Former Hungarian clan Genus (gens) PápaCountryKingdom of HungaryFounded11th centuryFounderPopoDissolution14th centuryCadet branchesMezőlak branch Pápa (also Papa) was the name of a gens (Latin for clan; nemzetség in Hungarian) in the Kingdom of Hungary, in the Árpádian era. History According to written records from the 13th century, the ancestor of the kindred was a certain Popo (Pápa), a Bavarian knight who participated in Stephen I of Hungary's war against Koppány. Historian András...
بطولة باوليستا 2018 تفاصيل الموسم بطولة باوليستا النسخة 117 البلد البرازيل البطل نادي كورينثيانز مباريات ملعوبة 121 عدد المشاركين 16 أهداف مسجلة 250 بطولة باوليستا 2017 بطولة باوليستا 2019 تعديل مصدري - تعديل بطولة باوليستا 2018 هو الموسم 117 من بط...
American actress Zohra LampertZohra Lampert in 1953Born (1937-05-13) May 13, 1937 (age 87)Manhattan, New York City, New York, U.S.Other namesZohra AltonAlma materUniversity of ChicagoOccupationActressYears active1953–2016Spouse Jonathan Schwartz (m. 2010) Zohra Lampert (born May 13, 1937)[1] is a retired American actress, who has had roles on stage, film and television. She performed under her then-married name of Zohra Alton early ...
Konvergensi (matematika) beralih ke halaman ini. Untuk kegunaan lain, lihat Konvergen. Dalam matematika, deret takhingga (bahasa Inggris: Infinite sequence) adalah hasil jumlah suku-suku dari suatu barisan takhingga bilangan. Lebih tepatnya, diberikan suatu barisan takhingga ( a 0 , a 1 , a 2 , … ) {\displaystyle \left(a_{0},a_{1},a_{2},\ldots \right)} . Maka, dapat dikonstruksikan deret takhingga S sebagai berikut S = a 0 + a 1 + a 2 + ⋯ = ∑ k = 0 ∞ a k . {\di...