Lester's theorem

The Fermat points , the center of the nine-point circle (light blue), and the circumcenter of the green triangle lie on the Lester circle (black).

In Euclidean plane geometry, Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter lie on the same circle. The result is named after June Lester, who published it in 1997,[1] and the circle through these points was called the Lester circle by Clark Kimberling.[2] Lester proved the result by using the properties of complex numbers; subsequent authors have given elementary proofs[3][4][5][6], proofs using vector arithmetic,[7] and computerized proofs.[8] The center of the Lester circle is also a triangle center. It is the center designated as X(1116) in the Encyclopedia of Triangle Centers. [9] Recently, Peter Moses discovered 21 other triangle centers lie on the Lester circle. The points are numbered X(15535) – X(15555) in the Encyclopedia of Triangle Centers.[10]

Gibert's generalization

In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points. [11][12]

Dao's generalizations

Dao's first generalization

In 2014, Dao Thanh Oai extended Gibert's result to every rectangular hyperbola. The generalization is as follows: Let and lie on one branch of a rectangular hyperbola, and let and be the two points on the hyperbola that are symmetrical about its center (antipodal points), where the tangents at these points are parallel to the line . Let and be two points on the hyperbola where the tangents intersect at a point on the line . If the line intersects at , and the perpendicular bisector of intersects the hyperbola at and , then the six points , , and lie on a circle. When the rectangular hyperbola is the Kiepert hyperbola and and are the two Fermat points, Dao's generalization becomes Gibert's generalization. [12][13]

Dao's second generalization

In 2015, Dao Thanh Oai proposed another generalization of the Lester circle, this time associated with the Neuberg cubic. It can be stated as follows: Let be a point on the Neuberg cubic, and let be the reflection of in the line , with and defined cyclically. The lines , , and are known to be concurrent at a point denoted as . The four points , , , and lie on a circle. When is the point , it is known that , making Dao's generalization a restatement of the Lester Theorem. [13][14][15][16]

See also

References

  1. ^ Lester, June A. (1997), "Triangles. III. Complex triangle functions", Aequationes Mathematicae, 53 (1–2): 4–35, doi:10.1007/BF02215963, MR 1436263, S2CID 119667124
  2. ^ Kimberling, Clark (1996), "Lester circle", The Mathematics Teacher, 89 (1): 26, JSTOR 27969621
  3. ^ Shail, Ron (2001), "A proof of Lester's theorem", The Mathematical Gazette, 85 (503): 226–232, doi:10.2307/3622007, JSTOR 3622007, S2CID 125392368
  4. ^ Rigby, John (2003), "A simple proof of Lester's theorem", The Mathematical Gazette, 87 (510): 444–452, doi:10.1017/S0025557200173620, JSTOR 3621279, S2CID 125214460
  5. ^ Scott, J. A. (2003), "Two more proofs of Lester's theorem", The Mathematical Gazette, 87 (510): 553–566, doi:10.1017/S0025557200173917, JSTOR 3621308, S2CID 125997675
  6. ^ Duff, Michael (2005), "A short projective proof of Lester's theorem", The Mathematical Gazette, 89 (516): 505–506, doi:10.1017/S0025557200178581, S2CID 125894605
  7. ^ Dolan, Stan (2007), "Man versus computer", The Mathematical Gazette, 91 (522): 469–480, doi:10.1017/S0025557200182117, JSTOR 40378420, S2CID 126161757
  8. ^ Trott, Michael (1997), "Applying GroebnerBasis to three problems in geometry", Mathematica in Education and Research, 6 (1): 15–28
  9. ^ Clark Kimberling, X(1116) = CENTER OF THE LESTER CIRCLE in Encyclopedia of Triangle Centers
  10. ^ Peter Moses, Preamble before X(15535) in Encyclopedia of Triangle Centers
  11. ^ Paul Yiu, The circles of Lester, Evans, Parry, and their generalizations, Forum Geometricorum, volume 10, pages 175–209, ISSN 1534-1178
  12. ^ a b Dao Thanh Oai, A Simple Proof of Gibert’s Generalization of the Lester Circle Theorem, Forum Geometricorum, volume 14, pages 201–202, ISSN 1534-1178
  13. ^ a b Ngo Quang Duong, Generalization of the Lester circle, Global Journal of Advanced Research on Classical and Modern Geometries, Vol.10, (2021), Issue 1, pages 49–61, ISSN 2284-5569
  14. ^ Dao Thanh Oai, Generalizations of some famous classical Euclidean geometry theorems, International Journal of Computer Discovered Mathematics, Vol.1, (2016), Issue 3, pages 13–20, ISSN 2367-7775
  15. ^ Kimberling, X(7668) = POLE OF X(115)X(125) WITH RESPECT TO THE NINE-POINT CIRCLE in Encyclopedia of Triangle Centers
  16. ^ César Eliud Lozada, Preamble before X(42740) in Encyclopedia of Triangle Centers

Read other articles:

Ralph HammerasFilm Internasional Almanak 1937-38Lahir(1894-03-24)24 Maret 1894Minneapolis, MinnesotaMeninggal3 Februari 1970(1970-02-03) (umur 75)Los Angeles, CaliforniaPekerjaanPerancang Efek khususSinematograferSutradara seniTahun aktif1925-1960 Ralph Hammeras (24 Maret 1894 – 3 Februari 1970) adalah seorang perancang efek khusus, sinematografer, sutradara seni Amerika. Ia dinominasikan untuk tiga Academy Award. Ia membuat sebuah miniatur berskala besar dari kota London untuk f...

 

Fahrenheit飛輪海Fahrenheit pada acara Let's Bike Taiwan di bulan September 2009. Dari kiri ke kanan: Aaron Yan, Calvin Chen, Wu Chun, Jiro WangInformasi latar belakangNama lainFRH, FLHFei Fei 飛飛Ku Shuai Shen Mi酷帥神迷Asal Republik TiongkokGenrePop mandarinPekerjaanPenyanyi, aktor, modelTahun aktif2005–sekarangLabelComic ProductionsHIM International MusicWOW Music (HK)Situs webwww.him.com.twAnggotaCalvin ChenJiro WangWu ChunAaron Yan Fahrenheit adalah boyband Taiwan yang terdiri ...

 

Bruchsal Lambang kebesaranLetak Bruchsal NegaraJermanNegara bagianBaden-WürttembergWilayahKarlsruheKreisKarlsruheSubdivisions6Pemerintahan • MayorCornelia Petzold-SchickLuas • Total93,02 km2 (3,592 sq mi)Ketinggian114 m (374 ft)Populasi (2021-12-31)[1] • Total45.644 • Kepadatan4,9/km2 (13/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos76601–76646Kode area telepon07251 and 07257Pelat kendaraanKASitus web...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Lembaga Pemasyarakatan (Lapas) Narkotika Sawahlunto. Lembaga Pemasyarakatan (Lapas) Narkotika Sawahlunto adalah penjara khusus terpidana narkotika yang terletak di Kawasan Wisata Kandi, Talawi, Sawahlunto, Indonesia. Lapas ini dibangun tahun 2008 deng...

 

Fictional character in the television crime drama series Breaking Bad and Better Call Saul Fictional character Hank SchraderBreaking Bad characterDean Norris as Hank SchraderFirst appearance Breaking Bad: Pilot (2008) Better Call Saul: The Guy for This (2020) Last appearance Breaking Bad: Ozymandias (2013) Better Call Saul: Namaste (2020) Created byVince GilliganPortrayed byDean NorrisIn-universe informationFull nameHenry R. SchraderNicknameHankTitle Special Agent ASAC of the Albuquerque DEA ...

 

Artikel ini bukan mengenai Zion. Gunung Sionהר ציוןTitik tertinggiKetinggian765 m (2.510 ft)GeografiGunung SionYerusalemPegununganYudea Gunung Sion adalah sebuah gunung di luar tembok Kota Tua di Yerusalem. Secara historis Gunung Zion terkait dengan Bait Allah. Berdasarkan penafsiran bagian-bagian Alkitab, Gunung Sion dianggap sama dengan Gunung Moriah. Istilah Sion juga digunakan untuk seluruh Tanah Israel. Ketinggian gunung ini kurang lebih adalah 765 m. Pranala luar Wikimed...

All the World's a StageAlbum live karya RushDirilis29 September 1976Direkam11-13 Juni 1976GenreProgressive rock, hard rockDurasi1:19:32LabelAnthem Records(Kanada) Atlantic (Jepang)Mercury RecordsProduserRush, Terry BrownKronologi Rush 2112(1976)21121976 All The World's a Stage(1976) A Farewell to Kings(1977)A Farewell to Kings1977 Singel dalam album All the World's a Stage Fly by Night / In the Mood (Live)Dirilis: 1976 Penilaian profesional Skor ulasan Sumber Nilai Allmusic link The R...

 

الشيخ  صادق الأحمر مناصب عضو مجلس النواب اليمني   في المنصب1993  – 2003  شيخ مشائخ حاشد   في المنصب28 يناير 2008  – 6 يناير 2023  عبد الله الأحمر  حمير عبد الله حسين الأحمر  معلومات شخصية الميلاد 6 أكتوبر 1956  خمر، عمران  الوفاة 6 يناير 2023 (66 سنة) [1]  عَمَ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Database application – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this template message) LibreOffice Base is an example of a database application A database application is a computer program whose primary purpose i...

Italian footballer (born 1999) Gianluigi Donnarumma Donnarumma with AC Milan in 2016Personal informationFull name Gianluigi Donnarumma[1]Date of birth (1999-02-25) 25 February 1999 (age 25)Place of birth Castellammare di Stabia, ItalyHeight 1.96 m (6 ft 5 in)[2]Position(s) GoalkeeperTeam informationCurrent team Paris Saint-GermainNumber 99Youth career2003–2013 ASD Club Napoli2013–2015 AC MilanSenior career*Years Team Apps (Gls)2015–2021 AC Milan 215 (...

 

British electric multiple unit British Rail Class 803Lumo Class 803 at Edinburgh WaverleyInterior of a Class 803 unitIn service2021–presentManufacturerHitachi RailBuilt atKasado Works, Kudamatsu, Japan[1]Newton Aycliffe Manufacturing Facility, EnglandFamily nameA-trainConstructed2020–2021Entered service25 October 2021 (2021-10-25)Number built5Formation5 cars per unit: DPTS-MS-MS-MS-DPTS[2]Fleet numbers803001–803005Capacity402 seats[3]Operat...

 

معركة تحرير تلعفر جزء من الحرب الأهلية العراقية  خارطة الهجوم العسكري في تلعفر معلومات عامة التاريخ 20 آب 2017 - 31 آب 2017(11 يومًا) البلد العراق  الموقع محافظة نينوى، العراق36°22′27″N 42°27′13″E / 36.374166666667°N 42.453611111111°E / 36.374166666667; 42.453611111111   النتيجة إستعادة الحكو�...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الحفيره (مركز ظلم) قرية تقسيم إداري  قائمة الدول  السعودية  مناطق السعودية محافظة الطائف، منطقة م�...

 

Holiday in various countries This article is about the holiday in general. For the specific national holidays, see Thanksgiving (Canada) and Thanksgiving (United States). For other uses, see Thanksgiving (disambiguation). Turkey Day redirects here. For the Turkish Republic Day, see Republic Day (Turkey). Thanksgiving DayA typical Thanksgiving dinner in the United StatesObserved byCountries Canada Germany Liberia Saint Lucia United States Sub-national entities Leiden (Netherlands) Norfolk...

 

Gianfranco Vissani (Civitella del Lago, 22 novembre 1951) è un cuoco, gastronomo, scrittore e personaggio televisivo italiano. Indice 1 Biografia 1.1 Vita privata 2 Televisione 3 Procedimenti giudiziari 4 Riconoscimenti 4.1 Ristorante Casa Vissani 4.2 Altri premi 5 Opere 6 Note 7 Altri progetti 8 Collegamenti esterni Biografia Ha conseguito la qualifica di aiuto cuoco presso l'istituto professionale alberghiero di Spoleto nel 1967. Non ha frequentato il biennio di specializzazione per conseg...

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Hernani Jr.Hernani con lo Zenit San Pietroburgo nel 2017Nazionalità Brasile Altezza188 cm Peso77 kg Calcio RuoloCentrocampista Squadra Parma CarrieraGiovanili 2009-2013 Atlético Paranaense Squadre di club1 2013→  Joinville8 (0)2014-2016 Atlético Paranaense75 (9)[1]2017 ...

 

У этого термина существуют и другие значения, см. 10-я армия. 10-я армиянем. 10. Armee Годы существования август — октябрь 1939, август 1943 — май 1945 Страна  Нацистская Германия Тип полевая армия Участие в Польша и Италия Командиры Известные командиры Вальтер фон РейхенауХайнр...

 

Footballer (born 2004) Luca Koleosho Koleosho with Espanyol in 2022Personal informationFull name Luca Warrick Daeovie Koleosho[1]Date of birth (2004-09-15) 15 September 2004 (age 19)[1]Place of birth Norwalk, Connecticut, U.S.Height 1.75 m (5 ft 9 in)[1]Position(s) Left wingerTeam informationCurrent team BurnleyNumber 30Youth career2011–2012 Trumbull United2012–2016 Manhattan Kickers2016–2020 Reus2020–2022 EspanyolSenior career*Years Team Ap...

Senusret IIISenusret III (Metropolitan Museum)Heads of Senusret III from the British MuseumFiraunMasa pemerintahan1878 – 1839 SM (Dinasti ke-12)PendahuluSenusret IIPenggantiAmenemhat IIIGelar kerajaan Prenomen  (Praenomen) KhakhaureḪˁj-k3w-RˁKas dari Ra telah muncul Nomen SenusretS(j)-n-WsrtLaki-laki Wosret Nama Horus NetjerkheperuNṯrj-ḫprwHorus, bentuk ilahi Nama Nebty NetjermesutNṯrj-mswtDua perempuan, kelahiran ilahi Horus emas KheperBjk-nbw-ḫprThe golden Horus has been ...

 

Questa voce sull'argomento cestisti spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Diego OcampoNazionalità Spagna Pallacanestro RuoloAllenatore Squadra Manresa Rep. Ceca CarrieraCarriera da allenatore 1996-1999 Ourense(giov.)1999-2001Salesianos(giov.)2000-2001Carmelitas Vedruna2001-2004 Ourense(vice)2004-2005AD Cortegada2004-2005 Tarragona(vice)2005-2007 Tarrago...