Leptosphaeria maculans

Leptosphaeria maculans
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Pleosporales
Family: Leptosphaeriaceae
Genus: Leptosphaeria
Species:
L. maculans
Binomial name
Leptosphaeria maculans
Synonyms[1]

Phyllosticta brassicae
Sphaeria maculans Sowerby (1803)

Leptosphaeria maculans (anamorph Phoma lingam) is a fungal pathogen of the phylum Ascomycota that is the causal agent of blackleg disease on Brassica crops. Its genome has been sequenced,[2] and L. maculans is a well-studied model phytopathogenic fungus. Symptoms of blackleg generally include basal stem cankers, small grey lesions on leaves, and root rot. The major yield loss is due to stem canker. The fungus is dispersed by the wind as ascospores or rain splash in the case of the conidia. L. maculans grows best in wet conditions and a temperature range of 5–20 degrees Celsius. Rotation of crops, removal of stubble, application of fungicide, and crop resistance are all used to manage blackleg. The fungus is an important pathogen of Brassica napus (canola) crops.

Host and symptoms

Leptosphaeria maculans causes phoma stem canker or blackleg. Symptoms generally include basal stem cankers, small grey oval lesions on the leaf tissue and root rot (as the fungus can directly penetrate roots).[3] L. maculans infects a wide variety of Brassica crops including cabbage (Brassica oleracea) and oilseed rape (Brassica napus). L. maculans is especially virulent on Brassica napus. The first dramatic epidemic of L. maculans occurred in Wisconsin on cabbage.[4] The disease is diagnosed by the presence of small black pycnidia which occur on the edge of the leaf lesions. The presence of these pycnidia allow for this disease to be distinguished from Alternaria brassicae, another foliar pathogen with similar lesions, but no pycnidia.[5]

Leaf disease symptoms caused by Leptosphaeria maculans on Brassica napus. The leaf on the left shows necrosis caused by the fungus including the production of black pycnidia within the white lesions, whereas the younger leaf on the right is relatively disease free.

Disease cycle

Leptosphaeria maculans has a complicated life cycle. The pathogen begins as a saprophyte on stem residue and survives in the stubble. It then begins a hemibiotrophic stage that results in the production of leaf spots. Colonizing the plant tissue systemically,[6] it begins its endophytic stage within the stem. (Due to its systemic parasitism, quantitative assessment of L. maculans's impact cannot include lesion size or number.)[6] When the growing season ends, the fungus causes cankers at the base of the plant thereby beginning another necrotrophic stage.

Leptosphaeria maculans has both a teleomorph phase (sexual reproduction to generate pseudothecia that release ascospores) and an anamorph phase (asexual reproduction to produce pycnidia that release pycnidiospores). The disease spreads by wind born dispersal of ascospores and rain splash of conidia. In addition, phoma stem canker can also be spread by infected seeds when the fungus infects the seed pods of Brassica napus during the growing season, but this is far less frequent.[5] The disease is polycyclic in nature even though the conidia are not as virulent as the ascospores. The disease cycle starts with airborne ascospores which are released from the pseudothecia in the spring. The ascospores enter through the stomata to infect the plant. Soon after the infection, gray lesions and black pycnidia form on the leaves.

During the growing season, these pycnidia produce conidia that are dispersed by rain splash. These spores cause a secondary infection which is usually less severe than primary infection with ascospores. Stem cankers form from the disease moving systemically through the plant. Following the colonization of the intercellular spaces, the fungus will reach a vascular strand and spread down the stalk between the leaf and the stem. The disease will spread into as well as between the cells of the xylem. This colonization leads to the invasion and destruction of the stem cortex, which leads to the formation of stem canker.[7]

Stubble forms after the growing season due to residual plant material left in the field after harvest. The disease overwinters as pseudothecia and mycelium in the stubble. In spring the pseudothecia release their ascospores and the cycle repeats itself.

Virulence genetics

AvrLm3 is a gene which produces an effector which is recognized by Rlm3, in which case it is an avirulence gene,[8][9] see § Rlm3.

Environment

Temperature and moisture are the two most important environmental conditions for the development of L. maculans spores. A temperature of 5-20 degrees Celsius is the optimal temperature range for pseudothecia to mature.[10] A wet humid environment increases the severity of the disease due to the dispersal of conidia by rain splash. As well as rain, hail storms also increase the severity of the disease.

Management

Cultural methods such as removing stubble and crop rotation can be very effective. By removing the stubble, overwintering pseudothecia and mycelium are less prevalent, reducing the risk of infection. In Canada, crop rotation decreases blackleg dramatically in canola crops.[11] It is suggested to have a 3-year crop rotation of canola and to plant non-host plants such as cereals in between these periods.[12] Chemical methods, such as the application of fungicides, can decrease instances of disease. EBI and MBC fungicides are typically used. EBI fungicides inhibit Ergosterol biosynthesis whereas MBC fungicides disrupt beta tubuline assembly in mitosis. EBIs are the best option for control of L. maculans as they inhibit the growth of conidia. Although fungicides such as EBIs are effective on conidia, they have no effect on ascospores which will grow regardless of the fungicide concentration.[13] Resistance methods can also be used to great effect. Typically race specific Rlm genes are used for resistance (Rlm1-Rlm9) in Brassica napus crops.[14]

Plant disease resistance

Leptosphaeria maculans is controlled by both race-specific gene-for-gene resistance via so-called resistance (R) genes detecting corresponding avirulence (Avr) genes and quantitative, broad, resistance traits. Since L. maculans is sequenced [2] and due to the importance of this pathogen, many different Avr genes have been identified and cloned.

Arabidopsis thaliana model system

Arabidopsis thaliana is a commonly used model organism in plant sciences which is closely related to Brassica. Interestingly, this model organism shows a very high degree of resistance to L. maculans in all accessions tested (except An-1, which provided the source for the rlm3 allele, see below) with no known virulent races known to date, which makes this pathosystem close to a non-host interaction.[15] Interestingly, this high level of resistance can be broken by mutation and some resistance can be transferred from A. thaliana to Brassica napus - for example is a B. napus chromosome addition line with A. thaliana chromosome 3 more resistant to L. maculans.[16]

RLM1 and RLM2

Despite all A. thaliana accessions being resistant to L. maculans, it was discovered that this resistance could be regulated by different loci. In crosses between different accessions, two loci were discovered: RLM1 on chromosome 1 and RLM2 on chromosome 4. The R gene responsible for RLM1 resistance was identified as an R gene of the TIR-NB-LRR family, but the T-DNA insertion mutants were less susceptible than the natural rlm1 allele, indicating that multiple genes at the locus could contribute to resistance.[17]

RLM3

In contrast to RLM1 and RLM2 , RLM3 is not specific to L. maculans and mutant alleles in this gene cause broad susceptibility to multiple fungi.[18]

Camalexin

Camalexin is a phytoalexin which is induced independently of RLM1-mediated resistance and mutants disrupted in camalexin biosynthesis show susceptibility to L. maculans,[15] indicating that this is a critical resistance mechanism.

Phytohormones

Mutants in signaling and biosynthesis of the traditional plant disease resistance hormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) do not disrupt A. thaliana resistance to L. maculans.[15] On the other hand, are mutants disrupted in abscisic acid (ABA) biosynthesis or signaling susceptible to L. maculans.[19] Interestingly, however, is SA and JA contributing to tolerance in a compatible interaction where RLM1 and camalexin-mediated resistances have been mutated, and a quadruple mutant (where RLM1, camalexin, JA and SA-dependent responses are blocked) is hyper-susceptible.[20] In contrast, ET appears to be detrimental for disease resistance.

Brassica crops

The Brassica crops consists of combinations of 3 major ancestral genomes (A, B and C) where the most important canola crop is Brassica napus with an AACC genome. Most resistance traits have been introgressed into B. napus from wild Brassica rapa (AA genome) relatives. In contrast, none or very few L. maculans resistance traits can be found in the Brassica oleracea (CC genome) parental species.[21] Additionally, some resistance traits have been introgressed from the "B" genomes from Brassica nigra (BB genome), Brassica juncea (AABB genome) or Brassica carinata (BBCC genome) into B. napus. In the Brassica-L. maculans interactions, there are many race-specific resistance genes known, and some of the corresponding fungal avirulence genes have also been identified.[14][22][23]

Rlm1

Rlm1 has been mapped to Brassica chromosome A07.[14][23] Rlm1 will induce a resistance response against an L. maculans strain harboring the AvrLm1 avirulence gene.[23]

Rlm2

Rlm2 will induce a resistance response against an L. maculans strain harboring the AvrLm2 avirulence gene.[23] Rlm2 s located on chromosome A10 at the same locus as LepR3 as and has been cloned.[24] The Rlm2 gene encodes for a receptor-like protein with a transmembrane domain and extracellular leucine rich repeats.

Rlm3

Rlm3 has been mapped to Brassica chromosome A07.[14][23] Rlm3 will induce a resistance response against an L. maculans strain harboring AvrLm3,[23][8][9] see § AvrLm3.

Rlm4

Rlm4 has been mapped to Brassica chromosome A07.[14][23] Rlm4 will induce a resistance response against an L. maculans strain harboring the AvrLm4-7 avirulence gene.[23]

Rlm5

Rlm5 and RlmJ1 have been found in Brassica juncea but it is still uncertain whether they reside on the A or B genomes.[23]

Rlm6

Rlm6 is normally found in the B genome in Brassica juncea or Brassica nigra. This resistance gene was introgressed into Brassica napus from the mustard Brassica juncea.

Rlm7

Rlm7 has been mapped to Brassica chromosome A07.[23]

Rlm8

Rlm8 resides on the A genome in Brassica rapa and Brassica napus, but it has not yet been mapped further.[23]

Rlm9

The Rlm9 gene (mapped to chromosome A07) has been cloned [25] and it encodes a Wall-associated-kinase-like (WAKL) protein. Rlm9 responds to the AvrLm5-9 avirulence gene.

Rlm10

Like with Rlm6, Rlm10 is present in the B genome of Brassica juncea or Brassica nigra, but it has not yet been introgressed into Brassica napus.

Rlm11

Rlm11 resides on the A genome in Brassica rapa and Brassica napus, but it has not yet been mapped further.[23]

LepR3

LepR3 was introduced into the Australian B. napus cultivar Surpass 400 from a wild B. rapa var. sylvestris. This resistance became ineffective within three years of commercial cultivation.[26] LepR3 will induce a resistance response against an L. maculans strain harboring the AvrLm1 avirulence gene.[23] LepR3 is located at the same locus as Rlm2 and also this gene has been cloned. Like the Rlm2 allele, the encoded LepR3 protein is a receptor-like protein with a transmembrane domain and extracellular leucine rich repeats.[24] The predicted protein structure indicates that the LepR3 and Rlm2 R genes (in contrast to the intracellular Arabidopsis RLM1 R gene) senses L. maculans in the extracellular space (apoplast).

Importance

Leptosphaeria maculans is the most damaging pathogen of Brassica napus, which is used as a feed source for livestock and for its rapeseed oil.[27] L. maculans destroys around 5–20% of canola yields in France.[28] The disease is very important in England as well: from 2000 to 2002, the disease resulted in approximately £56 million worth of damage per season.[29] Rapeseed oil is the preferred European oil source for biofuel due to its high yield. B. napus produces more oil per land area than other sources like soybeans.[27] Major losses to oilseed crops have also occurred in Australia. The most recent significant losses were in 2003, to the widely planted B. napus cultivars containing a resistance gene from B. rapa.[30]

L. maculans metabolizes brassinin, an important phytoalexin produced by Brassica species, into indole-3-carboxaldehyde and indole-3-carboxylic acid. Virulent isolates proceed through the (3-indolylmethyl)dithiocarbamate S-oxide intermediate,[31] while avirulent isolates first convert brassinin to N-acetyl-3-indolylmethylamine and 3-indolylmethylamine.[32] Research has shown that brassinin could be important as a chemo-preventative agent in the treatment of cancer.[33]

As a bioengineering innovation, in 2010 it was shown that a light-driven protein from L. maculans could be used to mediate, alongside earlier reagents, multi-color silencing of neurons in the mammalian nervous system.[34]

References

  1. ^ "Leptosphaeria maculans (Sowerby) P. Karst. 1863". MycoBank. International Mycological Association. Retrieved 2011-07-05.
  2. ^ a b Rouxel, Thierry; Grandaubert, Jonathan; Hane, James K.; Hoede, Claire; van de Wouw, Angela P.; Couloux, Arnaud; Dominguez, Victoria; Anthouard, Véronique; Bally, Pascal; Bourras, Salim; Cozijnsen, Anton J.; Ciuffetti, Lynda M.; Degrave, Alexandre; Dilmaghani, Azita; Duret, Laurent; Fudal, Isabelle; Goodwin, Stephen B.; Gout, Lilian; Glaser, Nicolas; Linglin, Juliette; Kema, Gert H. J.; Lapalu, Nicolas; Lawrence, Christopher B.; May, Kim; Meyer, Michel; Ollivier, Bénédicte; Poulain, Julie; Schoch, Conrad L.; Simon, Adeline; Spatafora, Joseph W.; Stachowiak, Anna; Turgeon, B. Gillian; Tyler, Brett M.; Vincent, Delphine; Weissenbach, Jean; Amselem, Joëlle; Quesneville, Hadi; Oliver, Richard P.; Wincker, Patrick; Balesdent, Marie-Hélène; Howlett, Barbara J. (2011-02-15). "Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations". Nature Communications. 2: 202–. Bibcode:2011NatCo...2..202R. doi:10.1038/ncomms1189. ISSN 2041-1723. PMC 3105345. PMID 21326234.
  3. ^ Sprague, S. Howlett, B. Kirkegaard, J. Watt M. "Pathways of infection of Brassica napus roots by Leptosphaeria maculans" New Phytologist, 2007, 176, 211-222
  4. ^ Dilmaghani, A. Despeghel, J.P. Phillips, D. Moreno-Rico, O. Rouxel, T. Gout, C. Vincenot, L. Wu, C. J.P. Balesdent, M.H. Li, Hua. Barbetti, M.J. Davey, J. "The Leptosphaeria maculans- Leptosphaeria biglobosa species complex in the American continent.", Plant Pathology, 2009, 58, 1044-1058
  5. ^ a b http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/Blackleg.aspx Archived 2014-05-20 at the Wayback Machine, "Blackleg of Oilseed Rape.", Apsnet, 2012
  6. ^ a b Lannou, Christian (2012-09-08). "Variation and Selection of Quantitative Traits in Plant Pathogens". Annual Review of Phytopathology. 50 (1). Annual Reviews: 319–338. doi:10.1146/annurev-phyto-081211-173031. ISSN 0066-4286. PMID 22702351.
  7. ^ Hammond, Kim E., B. G. Lewis, and T. M. Musa."A Systemic Pathway in the Infection of Oilseed Rape Plants by Leptosphaeria maculans" Plant Pathology, 1985, 34 (4), 557-565
  8. ^ a b Wouw, Angela; Idnurm, Alexander (2019). "Biotechnological potential of engineering pathogen effector proteins for use in plant disease management". Biotechnology Advances. 37 (6). Elsevier Inc: 107387. doi:10.1016/j.biotechadv.2019.04.009. ISSN 0734-9750. PMID 31022532. S2CID 133604915.
  9. ^ a b "Plenodomus lingam AvrLm3 gene, complete CDS". 20 December 2015.
  10. ^ Toscano-Underwood, C. Hall, A. Fitt, B. Huang, Y. "Effects of temperature on maturation of pseduothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris.", Plant Pathology, 2003, 52, 726-736
  11. ^ Marcroft, S. Van de Wouw, A. Salisbury, P. Potter, T. Howlett, B. "Effect of rotation of canola (Brassica napus) cultivars with different compliments of blackleg resistance genes on disease severity", Plant Pathology, 2012, 61, 934-944
  12. ^ http://www.agf.gov.bc.ca/cropprot/blackleg.htm "Blackleg of Canola" British Columbia 2007
  13. ^ Eckert, M. Fitt, B. Selley, A. Rossal, S. "Effects of fungicides on in vitro spore germination and myclial growth of the phytopathogens Leptosphaeria maculans and L. biglobosa phoma stem canker of oilseed rape.", Pest Management Science, 2010, 66, 396-405
  14. ^ a b c d e Delroune R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH. "A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus", Phytopathology, 2004, 94, 578-583
  15. ^ a b c Bohman, Svante; Staal, Jens; Thomma, Bart P. H. J.; Wang, Maolin; Dixelius, Christina (January 2004). "Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling". Plant J. 37 (1): 9–20. doi:10.1046/j.1365-313X.2003.01927.x. PMID 14675428.
  16. ^ Bohman, S.; Wang, M.; Dixelius, C. (September 2002). "Arabidopsis thaliana-derived resistance against Leptosphaeria maculans in a Brassica napus genomic background". Theoretical and Applied Genetics. 105 (4): 498–504. doi:10.1007/s00122-002-0885-5. ISSN 1432-2242. PMID 12582497. S2CID 30284468.
  17. ^ Staal, Jens; Kaliff, Maria; Bohman, Svante; Dixelius, Christina (April 2006). "Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease". Plant J. 46 (2): 218–30. doi:10.1111/j.1365-313X.2006.02688.x. PMID 16623885.
  18. ^ Staal, Jens; Kaliff, Maria; Dewaele, Ellen; Persson, Mattias; Dixelius, Christina (June 2008). "RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens". Plant J. 55 (2): 188–200. doi:10.1111/j.1365-313X.2008.03503.x. PMID 18397376.
  19. ^ Kaliff, Maria; Staal, Jens; Myrenås, Mattias; Dixelius, Christina (April 2007). "ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling". Mol Plant Microbe Interact. 20 (4): 335–45. doi:10.1094/MPMI-20-4-0335. PMID 17427804.
  20. ^ Persson, Mattias; Staal, Jens; Oide, Shinichi; Dixelius, Christina (2009). "Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances". The New Phytologist. 182 (2): 470–482. doi:10.1111/j.1469-8137.2009.02763.x. ISSN 1469-8137. PMID 19220763.
  21. ^ Robin, Arif Hasan Khan; Larkan, Nicholas J.; Laila, Rawnak; Park, Jong-In; Ahmed, Nasar Uddin; Borhan, Hossein; Parkin, Isobel A. P.; Nou, Ill-Sup (2017-11-01). "Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg disease". European Journal of Plant Pathology. 149 (3): 611–623. Bibcode:2017EJPP..149..611R. doi:10.1007/s10658-017-1210-0. ISSN 1573-8469. S2CID 10250213.
  22. ^ Raman, Harsh; Raman, Rosy; Coombes, Neil; Song, Jie; Diffey, Simon; Kilian, Andrzej; Lindbeck, Kurt; Barbulescu, Denise M.; Batley, Jacqueline; Edwards, David; Salisbury, Phil A.; Marcroft, Steve (2016-10-24). "Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola". Frontiers in Plant Science. 7: 1513. doi:10.3389/fpls.2016.01513. ISSN 1664-462X. PMC 5075532. PMID 27822217.
  23. ^ a b c d e f g h i j k l m Larkan, Nicholas J.; Yu, Fengqun; Lydiate, Derek J.; Rimmer, S. Roger; Borhan, M. Hossein (2016-11-28). "Single R Gene Introgression Lines for Accurate Dissection of the Brassica - Leptosphaeria Pathosystem". Frontiers in Plant Science. 7: 1771. doi:10.3389/fpls.2016.01771. ISSN 1664-462X. PMC 5124708. PMID 27965684.
  24. ^ a b Larkan, N. J.; Lydiate, D. J.; Parkin, I. a. P.; Nelson, M. N.; Epp, D. J.; Cowling, W. A.; Rimmer, S. R.; Borhan, M. H. (January 2013). "The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1". The New Phytologist. 197 (2): 595–605. doi:10.1111/nph.12043. ISSN 1469-8137. PMID 23206118.
  25. ^ Larkan, Nicholas J.; Ma, Lisong; Haddadi, Parham; Buchwaldt, Miles; Parkin, Isobel A. P.; Djavaheri, Mohammad; Borhan, M. Hossein (2020-08-14). "The Brassica napus Wall-Associated Kinase-Like (WAKL) gene Rlm9 provides race-specific blackleg resistance". The Plant Journal: For Cell and Molecular Biology. 104 (4): 892–900. doi:10.1111/tpj.14966. ISSN 1365-313X. PMC 7756564. PMID 32794614.
  26. ^ Sprague, SJ; Marcroft, SJ; Hayden, HL; Howlett, BJ (2006). "Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia". Plant Disease. 90 (2): 190–198. doi:10.1094/PD-90-0190. ISSN 0191-2917. PMID 30786411.
  27. ^ a b http://www.biodieseltechnologiesindia.com/rapeseed.html "Rapeseed as a fuel for biodiesel" "Biodiesel Technologies" 2008
  28. ^ Toscano-Underwood, C. Hall, A. Fitt, B. Huang, Y. "Effects of temperature on maturation of pseduothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris." Plant Pathology, 2003, 52, 726-736
  29. ^ B.D.L. Fitt, H. Brun, M.J. Barbetti, S.R. Rimmer "World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on Oilseed rape (Brassica napus)", European Journal of Plant Pathology, 2006, 114 (1), 3-15
  30. ^ Sprague, S. J., S. J. Marcroft, H. L. Hayden, and B. J. Howlett "Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia." Plant Pathology, 2006, 59, 190-198
  31. ^ J. Org. Chem. 1991,56, 2619-2621
  32. ^ J. Nat. Prod., 1993, 56 (5), 731–738
  33. ^ Mehta, R. G., J. Liu, A. Constantinou, C. F. Thomas, M. Hawthorne, M. You, C. Gerhäuser, J. M. Pezzuto, R. C. Moon, and R. M. Moriarty "Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage.", Carcinogenesis, 1995,16, 399-404
  34. ^ Chow, B. Y.; Han, X.; Dobry, A. S.; et al. (January 2010). "High-performance genetically targetable optical neural silencing by light-driven proton pumps". Nature. 463 (7277): 98–102. Bibcode:2010Natur.463...98C. doi:10.1038/nature08652. PMC 2939492. PMID 20054397.

Further reading

Read other articles:

Star Trek: First ContactPosterSutradaraJonathan FrakesProduserRick Berman Marty Hornstein Peter LauritsonDitulis olehRick BermanSkenarioBrannon Braga Ronald D. MooreCeritaRick Berman Brannon BragaRonald D. MoorePemeranLihat di bawahPenata musikJerry Goldsmith Joel GoldsmithSinematograferMatthew F. LeonettiPenyuntingAnastasia Emmons John W. WheelerDistributorParamount PicturesTanggal rilis22 November 1996Durasi111 menitNegara Amerika SerikatBahasaInggrisAnggaran45.000.000 Dolar ASP...

 

 

نهائي كأس العالم لكرة القدم 1974الحدثكأس العالم لكرة القدم 1974 هولندا ألمانيا الغربية 1 2 التاريخالتاريخ 7 يوليو 1974الملعبملعب ميونخ الأولمبي، ميونخ عاصمة ألمانيا الغربية في ذلك الوقت .رجل المباراةجيرد مولرالحكمجاك تايلر إنجلتراالحضور75,200الطقسمشمس → 1970 1978 ← نهائي كأس العالم...

 

 

NepalJulukanThe GorkhalisAsosiasiAsosiasi Sepak Bola Seluruh Nepal (ANFA)KonfederasiAFC (Asia)Sub-konfederasiSAFF (Asia Selatan)Pelatih Vincenzo Alberto AnneseKaptenKiran ChemjongPenampilan terbanyakKiran Chemjong (100)Pencetak gol terbanyakHari Khadka Nirajan RayamajhiAnjan Bista (13)Stadion kandangStadion Dasarath RangasalaKode FIFANEPPeringkat FIFATerkini 178 3 (4 April 2024)[1]Tertinggi124 (Desember 1993 – Februari 1994)Terendah196 (Januari 2016)Peringkat EloTerkini 201 6 (19 Ja...

American Founding Father and judge (1727–1819) William Samuel JohnsonPortrait by John Wesley Jarvis, between 1809 and 1819United States Senatorfrom ConnecticutIn officeMarch 4, 1789 – March 3, 1791Preceded byOffice createdSucceeded byRoger Sherman3rd President of Columbia UniversityIn office1787–1800Preceded byGeorge Clinton (acting)Succeeded byCharles Henry Wharton Personal detailsBornOctober 7, 1727Stratford, Connecticut ColonyDiedNovember 14, 1819(1819-11-14) (aged 92)Stratford,...

 

 

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

 

 

His Excellency赫瓦贾·纳齐姆丁爵士খাজা নাজিমুদ্দীন خواجہ ناظِمُ الدّین‬‎CIE, KCIE摄于1948年第2任巴基斯坦總理任期1951年10月17日—1953年4月17日君主佐治六世伊莉沙白二世总督古拉姆·穆罕默德前任利雅卡特·阿里·汗继任Mohammad Ali Bogra(英语:Mohammad Ali Bogra)第2任巴基斯坦總督(英语:Governor-General of Pakistan)任期1948年9月14日—1951年10月17日君�...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

American attorney Eric GonzalezGonzalez in 2023District Attorney of Kings CountyIncumbentAssumed office October 9, 2016Acting: October 9, 2016 – January 21, 2018Preceded byKenneth P. Thompson Personal detailsBorn (1969-01-24) January 24, 1969 (age 55)New York City, New York, U.S.Political partyDemocraticEducationCornell University (BA)University of Michigan (JD) Eric Gonzalez (born January 24, 1969)[1] is an American attorney who is currently serving as the district attorne...

 

 

Maxim Iglinskiy Datos personalesNacimiento Tselinogrado, Unión Soviética18 de abril de 1981 (43 años)Carrera deportivaRepresentante de Kazajistán KazajistánDeporte CiclismoDisciplina RutaTrayectoria Equipos profesionales 2004200520062007-2014 CapecDomina VacanzeMilramTeam Astana               Títulos Monumentos: Lieja-Bastoña-Lieja (2012)Clásicas:Montepaschi Strade Bianche (2010) [editar datos en Wikidata&...

Heart of the Sea - Le origini di Moby DickOwen Chase (Chris Hemsworth) in una scena del filmTitolo originaleIn the Heart of the Sea Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno2015 Durata121 min Rapporto1,85:1 Generedrammatico, avventura, azione RegiaRon Howard SoggettoNathaniel Philbrick (libro)Charles Leavitt, Rick Jaffa e Amanda Silver SceneggiaturaCharles Leavitt ProduttoreRon Howard, Brian Grazer, Joe Roth, Will Ward, Paula Weinstein Produttore esecutivoB...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

بلدة أيوسكو الإحداثيات 42°33′06″N 84°04′46″W / 42.5517°N 84.0794°W / 42.5517; -84.0794   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ليفينغستون  خصائص جغرافية  المساحة 35.5 ميل مربع  ارتفاع 283 متر  عدد السكان  عدد السكان 3870 (1 أبريل 2020)[...

Head of state of Romania President of RomaniaPreședintele RomânieiStandard of the president of RomaniaIncumbentKlaus Iohannissince 21 December 2014Style Mr. President (informal) StatusHead of StateMember ofSupreme Council of National Defence European CouncilResidenceCotroceni PalaceAppointerPopular voteTerm lengthFive years, renewable onceInaugural holderNicolae Ceaușescu (communist; first established)Ion Iliescu (current constitution)Formation28 March 19748 December 1991 (current for...

 

 

Tagana-anNom officiel (en) Municipality of Tagana-anGéographiePays  PhilippinesRégion CaragaProvince Surigao du NordSuperficie 77,29 km2Altitude 54 mCoordonnées 9° 41′ 47″ N, 125° 34′ 57″ EDémographiePopulation 17 323 hab. (2020)Densité 224,1 hab./km2 (2020)FonctionnementStatut MunicipalitéDépenses 104,6 M₱ (2020)Revenu fiscal 141,1 M₱ (2020)HistoireFondation 22 juin 1947IdentifiantsCode postal 8403Indicatif téléphoni...

 

 

Questa voce sull'argomento centri abitati della Louisiana è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Lafayettecity(EN) City of Lafayette / Ville de Lafayette Lafayette – Veduta LocalizzazioneStato Stati Uniti Stato federato Louisiana ParrocchiaLafayette AmministrazioneSindacoJoey Durel TerritorioCoordinate30°12′50″N 92°01′46″W30°12′50″N, 92°01′46″W (Lafayette) Altitudine11 m s.l.m. Superficie123,5 km² ...

Questa voce sull'argomento ciclisti danesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Jens VeggerbyNazionalità Danimarca Ciclismo SpecialitàPista, strada Termine carriera1999 CarrieraSquadre di club 1984-1985Fanini1985Linea M.D. Italia1985Maggi Mobili1985Lega F.C.I.1985-1986 Vini Ricordi1987-1990 7-Eleven1991 Panasonic1991Scott1992-1993 Subaru1994-1995 Motorola1998-1999Acceptcard Nazionale 1983-1988 Danimarca (stra...

 

 

دورناز ألفا يعالج التهاب القصبات الحاد،  وتليف كيسي  اعتبارات علاجية معرّفات CAS 9003-98-9  ECHA InfoCard ID 100.029.685  درغ بنك DB00003  المكون الفريد 953A26OA1Y  ChEMBL CHEMBL1201431  بيانات كيميائية تعديل مصدري - تعديل   دورناز ألفا (بالإنجليزية: Dornase alfa)‏ هو دواء يُستعمل في علاج:[1&#...

 

 

Branch of psychology Part of a series onPsychology Outline History Subfields Basic psychology Abnormal Affective neuroscience Affective science Behavioral genetics Behavioral neuroscience Behaviorism Cognitive/Cognitivism Cognitive neuroscience Social Comparative Cross-cultural Cultural Developmental Differential Ecological Evolutionary Experimental Gestalt Intelligence Mathematical Moral Neuropsychology Perception Personality Psycholinguistics Psychophysiology Quantitative Social Theoretical...

かじま もりのすけ鹿島 守之助 生誕 永富 守之助(ながとみ もりのすけ) (1896-02-02) 1896年2月2日 日本 兵庫県揖保郡半田村新在家(現たつの市揖保川町新在家)死没 (1975-12-03) 1975年12月3日(79歳没)墓地 曹洞宗吉祥寺(文京区本駒込)国籍 日本別名 鹿嶋 守之助出身校 東京帝国大学法学部政治学科職業 外交官、実業家、政治家著名な実績 外交史研究鹿島建設の発展パン�...

 

 

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2017年6月) 古い情報を更新する必要があります。(2021年6月)出典検索?: ファンケル – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパ�...