Larmor formula

A Yagi–Uda antenna. Radio waves can be radiated from an antenna by accelerating electrons in the antenna. This is a coherent process, so the total power radiated is proportional to the square of the number of electrons accelerating.

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897,[1] in the context of the wave theory of light.

When any charged particle (such as an electron, a proton, or an ion) accelerates, energy is radiated in the form of electromagnetic waves. For a particle whose velocity is small relative to the speed of light (i.e., nonrelativistic), the total power that the particle radiates (when considered as a point charge) can be calculated by the Larmor formula: where or is the proper acceleration, is the charge, and is the speed of light.[2] A relativistic generalization is given by the Liénard–Wiechert potentials.

In either unit system, the power radiated by a single electron can be expressed in terms of the classical electron radius and electron mass as:

One implication is that an electron orbiting around a nucleus, as in the Bohr model, should lose energy, fall to the nucleus and the atom should collapse. This puzzle was not solved until quantum theory was introduced.

Derivation

To calculate the power radiated by a point charge at a position , with a velocity, we integrate the Poynting vector over the surface of a sphere of radius R, to get:[3] The electric and magnetic fields are given by the Liénard-Wiechert field equations, The radius vector, , is the distance from the charged particle's position at the retarded time to the point of observation of the electromagnetic fields at the present time, is the charge's velocity divided by , is the charge's acceleration divided by , and . The variables, , , , and are all evaluated at the retarded time, .

We make a Lorentz transformation to the rest frame of the point charge where , and Here, is the rest frame acceleration parallel to , and is the rest frame acceleration perpendicular to .

We integrate the rest frame Poynting vector over the surface of a sphere of radius R', to get. We take the limit In this limit, , and so the electric field is given by with all variables evaluated at the present time.

Then, the surface integral for the radiated power reduces to The radiated power can be put back in terms of the original acceleration in the moving frame, to give The variables in this equation are in the original moving frame, but the rate of energy emission on the left hand side of the equation is still given in terms of the rest frame variables. However, the right-hand side will be shown below to be a Lorentz invariant, so radiated power can be Lorentz transformed to the moving frame, finally giving This result (in two forms) is the same as Liénard's relativistic extension[4] of Larmor's formula, and is given here with all variables at the present time. Its nonrelativistic reduction reduces to Larmor's original formula.

For high-energies, it appears that the power radiated for acceleration parallel to the velocity is a factor larger than that for perpendicular acceleration. However, writing the Liénard formula in terms of the velocity gives a misleading implication. In terms of momentum instead of velocity, the Liénard formula becomes

This shows that the power emitted for perpendicular to the velocity is larger by a factor of than the power for parallel to the velocity. This results in radiation damping being negligible for linear accelerators, but a limiting factor for circular accelerators.

Covariant form

The radiated power is actually a Lorentz scalar, given in covariant form as

To show this, we reduce the four-vector scalar product to vector notation. We start with

The time derivatives are.

When these derivatives are used, we get

With this expression for the scalar product, the manifestly invariant form for the power agrees with the vector form above, demonstrating that the radiated power is a Lorentz scalar

Angular distribution

The angular distribution of radiated power is given by a general formula, applicable whether or not the particle is relativistic. In CGS units, this formula is[5] where is a unit vector pointing from the particle towards the observer. In the case of linear motion (velocity parallel to acceleration), this simplifies to[6] where is the angle between the observer and the particle's motion.

Radiation reaction

The radiation from a charged particle carries energy and momentum. In order to satisfy energy and momentum conservation, the charged particle must experience a recoil at the time of emission. The radiation must exert an additional force on the charged particle. This force is known as Abraham-Lorentz force while its non-relativistic limit is known as the Lorentz self-force and relativistic forms are known as Lorentz-Dirac force or Abraham-Lorentz-Dirac force. The radiation reaction phenomenon is one of the key problems and consequences of the Larmor formula. According to classical electrodynamics, a charged particle produces electromagnetic radiation as it accelerates. The particle loses momentum and energy as a result of the radiation, which is carrying it away from it. The radiation response force, on the other hand, also acts on the charged particle as a result of the radiation.

The dynamics of charged particles are significantly impacted by the existence of this force. In particular, it causes a change in their motion that may be accounted for by the Larmor formula, a factor in the Lorentz-Dirac equation.

According to the Lorentz-Dirac equation, a charged particle's velocity will be influenced by a "self-force" resulting from its own radiation. Such non-physical behavior as runaway solutions, when the particle's velocity or energy become infinite in a finite amount of time, might result from this self-force.

A resolution to the paradoxes resulting from the introduction of a self-force due to the emission of electromagnetic radiation, is that there is no self-force produced. The acceleration of a charged particle produces electromagnetic radiation, whose outgoing energy reduces the energy of the charged particle. This results in 'radiation reaction' that decreases the acceleration of the charged particle, not as a self force, but just as less acceleration of the particle.[7]

Atomic physics

The invention of quantum physics, notably the Bohr model of the atom, was able to explain this gap between the classical prediction and the actual reality. The Bohr model proposed that transitions between distinct energy levels, which electrons could only inhabit, might account for the observed spectral lines of atoms. The wave-like properties of electrons and the idea of energy quantization were used to explain the stability of these electron orbits.

The Larmor formula can only be used for non-relativistic particles, which limits its usefulness. The Liénard-Wiechert potential is a more comprehensive formula that must be employed for particles travelling at relativistic speeds. In certain situations, more intricate calculations including numerical techniques or perturbation theory could be necessary to precisely compute the radiation the charged particle emits.

See also

References

  1. ^ Larmor, J (1897). "LXIII.On the theory of the magnetic influence on spectra; and on the radiation from moving ions". Philosophical Magazine. 5. 44 (271): 503–512. doi:10.1080/14786449708621095. Formula is mentioned in the text on the last page.
  2. ^ Lorentz, Hendrik Antoon (1909). The theory of electrons and its applications to the phenomena of light and radiant heat. Leipzig: B.G. Teubner. pp. 49–52.
  3. ^ Franklin, Jerrold (2021). "Electromagnetic Power Emitted by an Accelerating Point Charge". pp. 1–5. arXiv:2103.09317 [physics.class-ph].
  4. ^ Liénard, Alfred-Marie (1898). "électrique et magnétique produit par une charge électrique". Eclairage Electr.16,5–14. 16.
  5. ^ Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X. (Section 14.2ff)
  6. ^ Jackson 1998, eq 14.39.
  7. ^ Franklin, Jerrold (2023). "Radiation reaction on an accelerating point charge". International Journal of Modern Physics A. 38 (1): 350005–1–6. arXiv:2308.02628. Bibcode:2023IJMPA..3850005F. doi:10.1142/S0217751X23500057.

Read other articles:

Pelangi di Malam HariAlbum studio karya Vidi AldianoDirilis2 November 2008Direkam2008GenrePopLabelDePic Production/Suara HatiProduserLala HamidKronologi Vidi Aldiano Pelangi di Malam Hari (2008) Lelaki Pilihan (2009) Singel dalam album Pelangi di Malam Hari Nuansa Bening Status Palsu Cemburu Menguras Hati Cinta Jangan Kau Pergi Lelaki Pilihan2009 Pelangi di Malam Hari adalah album perdana dari penyanyi muda Vidi Aldiano yang berisikan 11 buah lagu, dengan lagu Nuansa Bening yang merupakan...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

2013 Japanese Grand Prix Race 15 of 19 in the 2013 Formula One World Championship Suzuka CircuitRace detailsDate 13 October 2013Official name 2013 Formula 1 Japanese Grand Prix[1]Location Suzuka CircuitSuzuka, JapanCourse Permanent racing facilityCourse length 5.807 km (3.608 miles)Distance 53 laps, 307.471 km (191.054 miles)Weather Warm and sunnyAttendance 171,000[2]Pole positionDriver Mark Webber Red Bull-RenaultTime 1:30.915Fastest lapDriver Mark Webber Red Bull-RenaultTim...

British Insulated Callender's CablesCompany typePublicIndustryBuilding materialsFounded1945; 79 years ago (1945)Defunct2000; 24 years ago (2000)FateRenamedSuccessorBalfour BeattyHeadquartersHelsby, UKProductsElectrical cable British Insulated Callender's Cables (BICC) was a 20th-century British cable manufacturer and construction company, now renamed after its former subsidiary Balfour Beatty. It was formed from the merger of two long established cable fir...

 

Знаки на українсько-польському кордоні Знаки на українсько-словацькому кордоні Прикордонний знак — об'єкт, який визначає перебіг державного кордону безпосередньо на місцевості. Зміст 1 Призначення 2 Опис 3 Цікаві факти 4 Посилання Призначення Проходження Державного �...

 

عبد الإله هارون معلومات شخصية الميلاد 1 يناير 1997   السودان  الوفاة 26 يونيو 2021 (24 سنة) [1]  الدوحة  سبب الوفاة حادث مرور  الطول 185 سنتيمتر  الجنسية قطر (28 ديسمبر 2002–26 يونيو 2021)  الوزن 80 كيلوغرام  الحياة العملية المهنة منافس ألعاب قوى  الرياضة ألعاب القو...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ميل كوين   معلومات شخصية الميلاد 4 مارس 1918   الوفاة 4 أبريل 1982 (64 سنة)   فورت سميث  مواطنة الولايات المتحدة  الحياة العملية المهنة لاعب كرة قاعدة  ...

 

Archive 1 7/2004 – 10/2007 Archive 2 10/2007 – 12/2009 Archive 3 2010 Archive 4 2011 Archive 5 2012 Archive 6 2013 Disambiguation link notification for January 16 Hi. Thank you for your recent edits. Wikipedia appreciates your help. We noticed though that when you edited Europa (mythology), you added a link pointing to the disambiguation page Asterios (check to confirm | fix with Dab solver). Such links are almost always unintended, since a disambiguation page is merely a list of Did yo...

 

Engineered organ replacement This article is about engineered artificial organs. For the growth of organs in vitro, see Organ culture. This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2016) An artificial organ is a human made organ device or tissue that is implanted or integrated into a human — interfacing with living tissue — to replace a natural organ, to duplicate or augment a specific function or func...

City and Local council in Southern Region, MaltaQormi Ħal QormiCittà Pinto, Casal Fornaro, Casal CurmiCity and Local councilView of the Church of Saint George FlagCoat of armsMotto(s): Altior ab Imo(Rising from the Low)Coordinates: 35°52′46″N 14°28′20″E / 35.87944°N 14.47222°E / 35.87944; 14.47222Country MaltaRegionSouthern RegionDistrictNorthern Harbour DistrictBordersAttard, Balzan, Birkirkara, Ħamrun, Luqa, Marsa, Santa Venera, Siġġiewi, ...

 

Музыкальный ансамбль Hortus Musicus Анса́мбль (от фр. ensemble «вместе, множество») — группа выступающих совместно исполнителей, обычно немногочисленного состава; также музыкальное произведение для ансамбля исполнителей. Содержание 1 Виды ансамблей 2 Специфика ансамблевой �...

 

Goods whose value is given by desirability rather than quantity Positional goods are goods valued only by how they are distributed among the population, not by how many of them there are available in total (as would be the case with other consumer goods). The source of greater worth of positional goods is their desirability as a status symbol, which usually results in them greatly exceeding the value of comparable goods. Various goods have been described as positional in a given capitalist so...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

2022 American crima drama television film Ray Donovan: The MovieFilm posterWritten by David Hollander Liev Schreiber Directed byDavid HollanderStarring Liev Schreiber Eddie Marsan Dash Mihok Pooch Hall Kerris Dorsey Jon Voight Music byMarcelo ZarvosCountry of originUnited StatesOriginal languageEnglishProductionExecutive producers David Hollander Liev Schreiber Mark Gordon Bryan Zuriff Lou Fusaro ProducerJohn H. RadulovicCinematographyDavid FrancoEditorLynne WillinghamRunning time100 minutesP...

 

Highway in New Jersey and Pennsylvania Vine Street Expressway redirects here. For the street of the same name, see Vine Street (Philadelphia). Interstate 676I-676 highlighted in red, PennDOT's definition of I-676 to I-95 in blueRoute informationAuxiliary route of I-76 (Ohio–New Jersey)Maintained by PennDOT, DRPA, and NJDOTLength6.90 mi[1] (11.10 km)Existed1964[2]–presentHistoryCompleted in 1991[3]NHSEntire routeMajor junctionsWest end I-76 ...

Phylum of amoeboid protists ForaminiferaTemporal range: 542–0 Ma[1] PreꞒ Ꞓ O S D C P T J K Pg N Latest Ediacaran–Recent Live Ammonia tepida (Rotaliida) Scientific classification Domain: Eukaryota Clade: Diaphoretickes Clade: SAR Phylum: Retaria Subphylum: Foraminiferad'Orbigny, 1826 Subdivisions Monothalamea Allogromiida Astrorhizida Xenophyophorea Reticulomyxa Tubothalamea Miliolida Spirillinida Silicoloculinida Globothalamea Textulariida Rotaliida Globigerinida Carterin...

 

Aiming device This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Iron sights – news · newspapers · books · scholar · JSTOR (January 2012) (Learn how and when to remove this message) Sight picture through iron sights of an H&K MP5 submachine gun. The annular shroud around the front post sight is aligned with...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dooniver – news · newspapers · books · scholar · JSTOR (April 2011) (Learn how and when to remove this message) Village in Connacht, IrelandDooniver Dún IbhirVillageDooniverLocation in IrelandCoordinates: 53°59′46″N 9°56′55″W / 53.99...

Lokomotif uap di los bundar milik Chicago and North Western Railway di depot kereta barang Chicago, Illinois, Desember 1942 Los bundar atau los bunder adalah jenis depo lokomotif yang berukuran besar dan memiliki struktur melingkar atau setengah lingkaran yang biasanya terletak di sekitar atau dekat dengan pemutar rel. Fitur utama dari los bundar tradisional adalah pemutar rel tersebut yang memberikan akses ketika bangunan ini digunakan untuk memperbaiki fasilitas kereta atau menyimpan lokomo...

 

「警察庁」とは異なります。 この項目では、1874年から1948年までの警視庁について説明しています。 1948年から1954年までの警視庁については「警視庁 (旧警察法)」をご覧ください。 1954年以降については「警視庁」をご覧ください。 日本の行政機関警視庁(けいしちょう)警視󠄁廳 1931年から1977年まで使用された、建て替え前の旧本庁舎(写真は昭和前期のもの)�...