Laplacian vector field

In vector calculus, a Laplacian vector field is a vector field which is both irrotational and incompressible.[1] If the field is denoted as v, then it is described by the following differential equations:

Laplace's equation

From the vector calculus identity it follows that

that is, that the field v satisfies Laplace's equation.[2]

However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a Laplacian vector field.

Cauchy-Riemann equations

A Laplacian vector field in the plane satisfies the Cauchy–Riemann equations: it is holomorphic.

Potential of Laplacian field

Suppose the curl of is zero, it follows that (when the domain of definition is simply connected) can be expressed as the gradient of a scalar potential (see irrotational field) which we define as :

since it is always true that .[3]

Other forms of can be expressed as

.[3]

When the field is incompressible, then

.[3]

And substituting equation 1 into the equation above yields

[3]

Therefore, the potential of a Laplacian field satisfies Laplace's equation.[3]

Potential flow theory

The Laplacian vector field has an impactful application in fluid dynamics. Consider the Laplacian vector field to be the velocity potential which is both irrotational and incompressible.

Irrotational flow is a flow where the vorticity, , is zero, and since , it follows that the condition is satisfied by defining a quantity called the velocity potential , such that , since always holds true.[3]

Irrotational flow is also called potential flow.[3]

If the fluid is incompressible, then conservation of mass requires that

.[4]

And substituting the previous equation into the above equation yields which satisfies the Laplace equation.[4]

In planar flow, the stream function can be defined with the following equations for incompressible planar flow in the xy-plane:

.[3]

When we also take into consideration , we are looking at the Cauchy-Reimann equations.[3]

These equations imply several characteristics of an incompressible planar potential flow. The lines of constant velocity potential are perpendicular to the streamlines (lines of constant ) everywhere.[4]

Further reading

The Laplacian vector field theory is being used in research in mathematics and medicine. Math researchers study the boundary values for Laplacian vector fields and investigate an innovative approach where they assume the surface is fractal and then must utilize methods for calculating a well-defined integration over the boundary.[5] Medical researchers proposed a method to obtain high resolution in vivo measurements of fascicle arrangements in skeletal muscle, where the Laplacian vector field behavior reflects observed characteristics of fascicle trajectories.[6]

See also

References

  1. ^ Arfken, George B; Weber, Hans J; Harris, Frank E (2013). "Vector Analysis". Mathematical Methods for Physicists: A Comprehensive Guide (7th ed.). Waltham, MA: Elsevier Inc. pp. 154–5. ISBN 978-0-12-384654-9.
  2. ^ Claycomb, J. R. (2018). "Vector Calculus". Mathematical Methods for Physics: Using MATLAB and Maple. Dulles, VA: Mercury Learning and Information. p. 199. ISBN 978-1-68392-098-4.
  3. ^ a b c d e f g h i Brennen, Christopher E (2004). "Incompressible, Inviscid, Irrotational Flow". Internet Book on Fluid Dynamics. Retrieved December 9, 2024.
  4. ^ a b c Techet, Alexandra (2005). "Hydrodynamics (13.012): 2005reading4". MIT OpenCourseWare. Retrieved December 9, 2024.
  5. ^ Abreu-Blaya, R; Bory-Reyes, J; Moreno-Garcia, T; Peña‐Peña, D (May 10, 2008). "Laplacian decomposition of vector fields on fractal surfaces". Mathematical Methods in the Applied Sciences. 31 (7): 849–857. doi:10.1002/mma.952 – via Wiley Online Library.
  6. ^ Choi, Hon Fai; Blemker, Silvia S (October 25, 2013). Sampaolesi, Maurilio (ed.). "Skeletal muscle fascicle arrangements can be reconstructed using a Laplacian vector field simulation". PLOS ONE. 8 (10): e77576. doi:10.1371/journal.pone.0077576.


Read other articles:

Ini adalah nama Batak Toba, marganya adalah Manalu. Jimmy Ramoz Manalu Dansatintel Bais TNIPetahanaMulai menjabat 18 Desember 2023 PendahuluBambang HerqutantoPenggantiPetahanaAsintel Kaskogabwilhan IIMasa jabatan27 September 2023 – 18 Desember 2023 PendahuluMuhammad AliPenggantiBambang HerqutantoInspektur Sekolah Staf dan Komando Angkatan DaratMasa jabatan19 April 2022 – 27 September 2023 PendahuluDiding Sutisna SukarmaPenggantiMuhammad AliKomandan Korem 033/Wira Pra...

 

Natrium hipoklorit Kation natriumKation natrium Model ruang terisi anion hipokloritAnion hipoklorit Nama Nama IUPAC Natrium hipoklorit Nama lain AntiforminPemutihKlorida dari sodaDalam larutan encer:Larutan Carrel-DakinLarutan Dakin modifikasiLarutan soda klorinasi untuk bedah Penanda Nomor CAS 7681-52-9 (anhidrat)[1]7681-52-8 (pentahidrat)[1] Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:32146 Y ChemSpider 22756 Y Nomor EC KEGG D01711&#...

 

في الإسلام، يقدم الممرضون خدمات الرعاية الصحية للمرضى والأسر والمجتمعات كدليل على حب الله ومحمد. مهنة التمريض ليست جديدة على الإسلام. تشمل التقاليد الإسلامية التعاطف والمسؤولية تجاه المحتاجين.[1] ظهر هذا المنظور خلال تطور الإسلام كدين وثقافة وحضارة. أول ممرضة في الإسل...

Pour les articles homonymes, voir Liu Xiang. Dans ce nom chinois, le nom de famille, Liu, précède le nom personnel. Liu Xiang Liu Xiang lors des Championnats du monde en salle 2010. Informations Disciplines 110 m haies Période d'activité 1999 - 2015 Nationalité Chinois Naissance 13 juillet 1983 (40 ans) Shanghai Taille 1,89 m Masse 87 kg Entraîneur Sun Haiping Records Ancien détenteur du record du monde du 110 m haies (12 s 88 en 2006) Palmarès Médailles obtenues Jeux olymp...

 

Extinct genus of dinosaurs VelocipesTemporal range: Late Triassic, 221.5–205.6 Ma PreꞒ Ꞓ O S D C P T J K Pg N Norian Fibula of the holotype Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Dinosauria Clade: Saurischia Clade: Eusaurischia Clade: Theropoda (?) Genus: †VelocipesHuene, 1932 Species: †V. guerichi Binomial name †Velocipes guerichiHuene, 1932 Velocipes (meaning quick foot) is a saurischian dinosaur genus from th...

 

Women's ice hockey tournament 2020 IIHF World Women's U18 Championship Division IITournament detailsHost countries Netherlands MexicoVenue(s)2 (in 2 host cities)Dates25–28 January 202028 January – 2 February 2020Teams82022 → See also: 2020 IIHF World Women's U18 Championship The 2020 IIHF World Women's U18 Championship Division II was two international under-18 women's ice hockey tournaments organized by the International Ice Hockey Federation (IIHF). Divisions I...

Ancient cemetery in Egypt The South Tombs Cemetery is an ancient Egyptian necropolis in Amarna, Upper Egypt. It was the burial place of low status individuals from the ancient city of Akhetaten. The site is located close to the Southern Tombs of the Nobles.[1] Archaeological excavation was undertaken by the Egypt Exploration Society between 2006 and 2013, revealing that those interred in the cemetery lived short, hard lives. Discovery This cemetery was discovered in 2003 during GPS su...

 

Computer animation technique This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Skeletal animation – news · newspapers · books · scholar · JSTOR (December 2007) (Learn how and when to remove this message) Bones (in green) used to pose a hand. In practice, the bones themselves are often hidden and replaced by mo...

 

Banten IIDaerah pemilihanuntuk Dewan Perwakilan RakyatRepublik IndonesiaWilayah Daftar Kabupaten : Serang Kota : Cilegon Serang ProvinsiBantenPopulasi2.852.453 (2023)[1]Elektorat2.059.041 (2024)[2]Daerah pemilihan saat iniDibentuk2004Kursi11 (2004—09)6 (2009—sekarang)Anggota  Masih lowong (Gerindra)  Ichsan Soelistio (PDI-P)  Tubagus Haerul Jaman (Golkar)  Jazuli Juwaini (PKS)  Yandri Susanto (PAN)  Nur'aeni (Demokrat)Dibentuk dariJa...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

Ortoverocomune Ortovero – VedutaL'oratorio di San Giovanni Battista LocalizzazioneStato Italia Regione Liguria Provincia Savona AmministrazioneSindacoAndrea Delfino (Lega Nord) dal 26-5-2014 (2º mandato dal 27-5-2019) Data di istituzione1861 TerritorioCoordinate44°03′11.94″N 8°05′15.1″E / 44.053317°N 8.087528°E44.053317; 8.087528 (Ortovero)Coordinate: 44°03′11.94″N 8°05′15.1″E / 44.053317°N 8.087528...

 

Cercle Arctique T. Cancer Équateur T. Capricorne Cercle AntarctiqueTracé du méridien de 28° est En géographie, le 28e méridien est est le méridien joignant les points de la surface de la Terre dont la longitude est égale à 28° est. Géographie Dimensions Comme tous les autres méridiens, la longueur du 28e méridien correspond à une demi-circonférence terrestre, soit 20 003,932 km. Au niveau de l'équateur, il est distant du méridien de Greenwich de 3 11...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Wakil Bupati Tapanuli TengahPetahanaTidak adasejak 24 Mei 2022Masa jabatan5 tahunDibentuk2001Pejabat pertamaH. Jamaluddin PohanSitus webwww.tapteng.go.id Berikut ini adalah daftar Wakil Bupati Tapanuli Tengah dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 H.Jamaluddin Pohan 2001 2004 1 [Ket. 1] Drs.Tuani Lumban TobingM.Si. Jabatan kosong 2004 2006   5 April 2006 12 Juni 2006 -   Drs.Rudolf Pardede(Penjabat) 2 Effendy Pohan 12 Juni 2006...

 

Earth-penetrating nuclear weapon Subsidence craters remaining after underground nuclear (test) explosions at the north end of the Yucca Flat, Nevada test site A nuclear bunker buster,[1] also known as an earth-penetrating weapon (EPW), is the nuclear equivalent of the conventional bunker buster. The non-nuclear component of the weapon is designed to penetrate soil, rock, or concrete to deliver a nuclear warhead to an underground target. These weapons would be used to destroy hardened,...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في ال...

 

Device used to launch aircraft from ships F-14 Tomcat preparing to connect to a catapult on USS Saratoga An aircraft catapult is a device used to allow aircraft to take off in a limited distance, typically from the deck of a vessel. They can also be installed on land-based runways, although this is rarely done. They are usually used on aircraft carriers as a form of assisted take off. In the form used on aircraft carriers the catapult consists of a track, or slot, built into the flight d...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rescue Me EuroGroove song – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) 1995 single by EuroGroove with Dannii MinogueRescue MeSingle by EuroGroove with Dannii Minoguefrom the album Eurogroove No. 03 ReleasedFebruary&...

For the hamlet near Leominster in Herefordshire, see Yatton, Aymestrey.Human settlement in EnglandYattonAll Saints Church, YattonYattonLocation within HerefordshirePopulation208 (2011 Census)Unitary authorityHerefordshireShire countyHerefordshireRegionWest MidlandsCountryEnglandSovereign stateUnited KingdomPost townRoss-on-WyePostcode districtHR9PoliceWest MerciaFireHereford and WorcesterAmbulanceWest Midlands UK ParliamentHereford and South Herefordshire List of...

 

The FlintstonesGenreKomediSitkomPembuatWilliam HannaJoseph BarberaFred CrippenSutradaraWilliam HannaJoseph BarberaFred CrippenPengisi suaraAlan ReedJean Vander PylMel BlancBea BenaderetGerry JohnsonDon MessickJohn StephensonPenggubah lagu temaHoyt Curtin[1]Negara asalAmerika SerikatBahasa asliInggrisJmlh. musim6Jmlh. episode166 (daftar episode)ProduksiProduserWilliam HannaJoseph BarberaDurasiVariasiRumah produksiHanna–BarberaPantomime PicturesDistributorScreen Gems (asli)Warner Bro...