La Géométrie

La Géométrie was published in 1637 as an appendix to Discours de la méthode (Discourse on the Method), written by René Descartes. In the Discourse, Descartes presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method[1] (as well as, perhaps, considering the contemporary European social climate of intellectual competitiveness, to show off a bit to a wider audience).

La Géométrie

The work was the first to propose the idea of uniting algebra and geometry into a single subject[2] and invented an algebraic geometry called analytic geometry, which involves reducing geometry to a form of arithmetic and algebra and translating geometric shapes into algebraic equations. For its time this was ground-breaking. It also contributed to the mathematical ideas of Leibniz and Newton and was thus important in the development of calculus.

The text

This appendix is divided into three "books".[3]

Book I is titled Problems Which Can Be Constructed by Means of Circles and Straight Lines Only. In this book he introduces algebraic notation that is still in use today. The letters at the end of the alphabet, viz., x, y, z, etc. are to denote unknown variables, while those at the start of the alphabet, a, b, c, etc. denote constants. He introduces modern exponential notation for powers (except for squares, where he kept the older tradition of writing repeated letters, such as, aa). He also breaks with the Greek tradition of associating powers with geometric referents, a2 with an area, a3 with a volume and so on, and treats them all as possible lengths of line segments. These notational devices permit him to describe an association of numbers to lengths of line segments that could be constructed with straightedge and compass. The bulk of the remainder of this book is occupied by Descartes's solution to "the locus problems of Pappus."[4] According to Pappus, given three or four lines in a plane, the problem is to find the locus of a point that moves so that the product of the distances from two of the fixed lines (along specified directions) is proportional to the square of the distance to the third line (in the three line case) or proportional to the product of the distances to the other two lines (in the four line case). In solving these problems and their generalizations, Descartes takes two line segments as unknown and designates them x and y. Known line segments are designated a, b, c, etc. The germinal idea of a Cartesian coordinate system can be traced back to this work.

In the second book, called On the Nature of Curved Lines, Descartes described two kinds of curves, called by him geometrical and mechanical. Geometrical curves are those which are now described by algebraic equations in two variables, however, Descartes described them kinematically and an essential feature was that all of their points could be obtained by construction from lower order curves. This represented an expansion beyond what was permitted by straightedge and compass constructions.[5] Other curves like the quadratrix and spiral, where only some of whose points could be constructed, were termed mechanical and were not considered suitable for mathematical study. Descartes also devised an algebraic method for finding the normal at any point of a curve whose equation is known. The construction of the tangents to the curve then easily follows and Descartes applied this algebraic procedure for finding tangents to several curves.

The third book, On the Construction of Solid and Supersolid Problems, is more properly algebraic than geometric and concerns the nature of equations and how they may be solved. He recommends that all terms of an equation be placed on one side and set equal to 0 to facilitate solution. He points out the factor theorem for polynomials and gives an intuitive proof that a polynomial of degree n has n roots. He systematically discussed negative and imaginary roots[6] of equations and explicitly used what is now known as Descartes' rule of signs.

Aftermath

Descartes wrote La Géométrie in French rather than the language used for most scholarly publication at the time, Latin. His exposition style was far from clear, the material was not arranged in a systematic manner and he generally only gave indications of proofs, leaving many of the details to the reader.[7] His attitude toward writing is indicated by statements such as "I did not undertake to say everything," or "It already wearies me to write so much about it," that occur frequently. Descartes justifies his omissions and obscurities with the remark that much was deliberately omitted "in order to give others the pleasure of discovering [it] for themselves."

Descartes is often credited with inventing the coordinate plane because he had the relevant concepts in his book,[8] however, nowhere in La Géométrie does the modern rectangular coordinate system appear. This and other improvements were added by mathematicians who took it upon themselves to clarify and explain Descartes' work.

This enhancement of Descartes' work was primarily carried out by Frans van Schooten, a professor of mathematics at Leiden and his students. Van Schooten published a Latin version of La Géométrie in 1649 and this was followed by three other editions in 1659−1661, 1683 and 1693. The 1659−1661 edition was a two volume work more than twice the length of the original filled with explanations and examples provided by van Schooten and this students. One of these students, Johannes Hudde provided a convenient method for determining double roots of a polynomial, known as Hudde's rule, that had been a difficult procedure in Descartes's method of tangents. These editions established analytic geometry in the seventeenth century.[9]

See also

Notes

  1. ^ Descartes 2006, p. 1x
  2. ^ Descartes 2006, p.1xiii "This short work marks the moment at which algebra and geometry ceased being separate."
  3. ^ this section follows Burton 2011, pp. 367-375
  4. ^ Pappus discussed the problems in his commentary on the Conics of Apollonius.
  5. ^ Boyer 2004, pp. 88-89
  6. ^ he was one of the first to use this term
  7. ^ Boyer 2004, pp. 103-104
  8. ^ A. D. Aleksandrov; Andréi Nikoláevich Kolmogórov; M. A. Lavrent'ev (1999). "§2: Descartes' two fundamental concepts". Mathematics, its content, methods, and meaning (Reprint of MIT Press 1963 ed.). Courier Dover Publications. pp. 184 ff. ISBN 0-486-40916-3.
  9. ^ Boyer 2004, pp. 108-109

References

Further reading

Read other articles:

Mamakari, sajian sarden khas Jepang yang sederhana, berupa sarden yang diawetkan dalam larutan cuka Sarden dalam kaleng, dikemas dalam minyak Sarden adalah jenis ikan yang paling umum dikonsumsi manusia, merupakan ikan berminyak berukuran relatif kecil.[1] Istilah sarden diambil dari nama pulau di Mediterania, yaitu pulau Sardinia di mana ikan sarden pernah terdapat dalam jumlah besar.[2][3] Istilah sarden sering kali tertukar dengan hewan jenis lain, tergantung defini...

Animated television series For other uses, see Dragon Prince (disambiguation). The Dragon PrinceAlso known asThe Dragon Prince: Mystery of Aaravos (season 4–present)GenreFantasyActionAdventureComedy dramaCreated byAaron EhaszJustin RichmondWritten byAaron EhaszJustin RichmondDevon GiehlIain HendryNeil MukhopadhyayDirected byVillads SpangsbergGiancarlo VolpeVoices ofJack DeSenaPaula BurrowsSasha RojenJason SimpsonRacquel BelmonteJesse InocallaComposerFrederik WiedmannCountry of originUnited ...

RotesångareStatus i världen: Nära hotad[1] SystematikDomänEukaryoterEukaryotaRikeDjurAnimaliaStamRyggsträngsdjurChordataUnderstamRyggradsdjurVertebrataKlassFåglarAvesOrdningTättingarPasseriformesFamiljLövsångarePhylloscopidaeSläktePhylloscopusArtRotesångareP. rotiensisVetenskapligt namn§ Phylloscopus rotiensisAuktorNg et al. 2018Hitta fler artiklar om fåglar med Fågelportalen Rotesångare[2] (Phylloscopus rotiensis) är en nyligen beskriven fågelart i familjen lövsångare inom...

Анн де Монморансифр. Anne de Montmorency портрет кисти Корнеля де Лион, ок. 1533-1536 гг. Сеньор де Монморанси 24 мая 1531 — 14 мая 1551 Предшественник Гийом де Монморанси Преемник титул упразднён Герцог де Монморанси 14 мая 1551 — 12 ноября 1567 Предшественник титул учреждён Преемник Франсуа д...

  لمعانٍ أخرى، طالع الرابح الأكبر (توضيح). يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) الرابح الأكبر (الموسم الأول) النوع تلفزيون الواقع السلسلة ا

Bathytoshia lata Estado de conservação Vulnerável (IUCN 3.1)[1] Classificação científica Domínio: Eukaryota Reino: Animalia Filo: Chordata Classe: Chondrichthyes Superordem: Batoidea Ordem: Myliobatiformes Família: Dasyatidae Subfamília: Dasyatinae Gênero: Bathytoshia Espécies: B. lata Nome binomial Bathytoshia lata(Garman, 1880) Sinónimos Dasyatis sciera Jenkins, 1903 Trygon lata Garman, 1880 O uje-de-cauda-espinhosa (nome científico: Bathytoshia lata) é uma espécie ...

  Solidago chilensis Romero amarilloTaxonomíaReino: PlantaeSubreino: TracheobiontaDivisión: MagnoliophytaClase: MagnoliopsidaOrden: AsteralesFamilia: AsteraceaeSubfamilia: AsteroideaeTribu: AstereaeGénero: SolidagoEspecie: Solidago chilensisMeyen[editar datos en Wikidata] Solidago chilensis (vara de oro, romero amarillo, felel, lanceta del Brasil[1]​), es una herbácea perenne de la Familia de las Asteraceae. Crece en jardines como planta de flores. Florece profusament...

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (May 2022) Hospital in Utah, United StatesGeorge E. Wahlen VA HospitalView of building 1 of the George E. Wahlen VAMC, adjacent from emergency departmentShow map of UtahShow map of the United StatesGeographyLocationSalt Lake City, Utah, United StatesCoordinates40°45′28.52″N 111°50′23.16″W / 40.7579222°N 111.83...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Hacking Team adalah perusahaan penyedia perangkat pengintai asal Italia.[1] Selain di kota asalnya, Milan, kantor Hacking Team juga berlokasi di Washington D.C. dan Singapura.[2] Hacking Team mulai ada sejak 2003.[1] Hacking Tea...

German politician Peter Harry CarstensenMinisterpräsident a. D.Peter Harry Carstensen in 2010Minister President of Schleswig-HolsteinIn office27 April 2005 – 12 June 2012PresidentHorst KöhlerChristian WulffJoachim GauckChancellorGerhard SchröderAngela MerkelPreceded byHeide SimonisSucceeded byTorsten AlbigChairman of CDU Schleswig-HolsteinIn office2 June 2002 – 18 September 2010Succeeded byChristian von BoetticherMember of the BundestagIn office29 March 1983 –&...

Mei Fang 梅方 Informasi pribadiNama lengkap Mei FangTanggal lahir 14 November 1989 (umur 34)[1]Tempat lahir Wuhan, Hubei, TiongkokTinggi 187 m (613 ft 6 in)Posisi bermain DefenderInformasi klubKlub saat ini Guangzhou EvergrandeNomor 3Karier junior2005–2008 Wuhan GuangguKarier senior*Tahun Tim Tampil (Gol)2008 Wuhan Guanggu 0 (0)2009–2013 Wuhan Zall 107 (7)2014– Guangzhou Evergrande 103 (1)Tim nasional‡2014– Timnas Tiongkok 23 (1) * Penampilan dan gol di...

Archipelago in eastern Indonesia Spice Islands redirects here. For other uses, see Spice Islands (disambiguation). For the Indonesian provinces administering the archipelago, see North Maluku and Maluku (province). Maluku IslandsFebruary 2013 map of the Maluku IslandsGeographyLocationSoutheast Asia, Melanesia (Aru Island)Coordinates03°S 129°E / 3°S 129°E / -3; 129Total islands~1000Major islandsHalmahera, Seram, Buru, Ambon, Ternate, Tidore, Aru Islands, Kai Islands...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) أدولف ينسن   معلومات شخصية الميلاد 12 يناير 1837[1][2][3]  كونيغسبرغ  الوفاة 23 يناير 1879 (42 سنة) [1][2][3]  بادن بادن  سبب الوفاة سل...

HMS Sir Galahad Class overview Builders Hall, Russell & Company J. Lewis & Sons Ltd Operators Royal Navy Built1941–1942 Completed8 General characteristics Type Minesweeper Danlayer Displacement440 long tons (447 t) Length125 ft (38.1 m) Beam23 ft 6 in (7.2 m) Draught13 ft 9 in (4.2 m) Complement35 Armament 1 × 12 pdr anti-aircraft gun 1 × 20 mm anti-aircraft gun 2 × machine guns The Round Table class was a small class of trawl...

Строфоида (от греч. στροφή — поворот) — алгебраическая кривая 3-го порядка. Строится следующим образом (см. Рис. 1): Рис. 1 Рис. 2 В декартовой системе координат, где ось абсцисс направлена по OX, а ось ординат по OD, задана фиксированная точка A на оси OX. Через т. А проводится произ...

Public university in western France University of AngersUniversité d'AngersSaint-Serge Campus in AngersTypePublicEstablished11th century-1793 (initial formation) 1971 (reopened)PresidentChristian Roblédo[1]Academic staff2,083[2]Students26,295LocationAngers ; Cholet ; Saumur, Pays de la Loire, FranceAffiliationsAUF, ComUE Angers-Le Mans, EUAWebsiteuniv-angers.fr The University of Angers (French: Université d'Angers; UA) is a public university in western France, wit...

46°56′00″N 26°22′11″E / 46.93332°N 26.3698°E / 46.93332; 26.3698 Petru Rareș National College The Petru Rareș National College (Colegiul Național Petru Rareș) is the oldest high school in Piatra Neamț, Romania. The school building dates to 1890–1892, and is classified as a historic monument by Romania's Ministry of Culture and Religious Affairs.[1] Alumni Dumitru Almaș Dumitru Coroamă Ilie Crețulescu Nicolae Dăscălescu Constantin Lăcăt...

2018 video gameNi no Kuni II: Revenant KingdomDeveloper(s)Level-5Publisher(s)Bandai Namco EntertainmentJP: Level-5Director(s)Yoshiaki KusudaTakafumi KoukamiDesigner(s)Kengo ShibataYuichi MuraseProgrammer(s)Yasuhiro AkasakaYusuke HashimotoRyosuke NakaharaArtist(s)Nobuyuki YanaiHiroshi MatsuyamaHiroyuki MaedaWriter(s)Akihiro HinoComposer(s)Joe HisaishiSeriesNi no KuniPlatform(s)PlayStation 4WindowsNintendo SwitchXbox OneXbox Series X/SReleasePS4, WindowsMarch 23, 2018Nintendo SwitchSeptember 17...

Anthropomorphic stone stelae within the perimeter of a tumulus The Kernosivsky idol (Керносівський ідол), dated to the mid 3rd millennium BC and associated with the late Pit Grave (Yamna) culture.[1] Anthropomorphic stele of the early type (Neolithic period) from Hamangia-Baia, Romania exhibited at Histria Museum Kurgan stelae[a] or Balbals (Ukrainian: балбал, most probably from Turkic word balbal meaning ancestor or grandfather[2]) are anthropom...

2002 studio album by Keak da SneakThe Farm BoyzStudio album by Keak da SneakReleasedOctober 22, 2002Recorded2002GenreGangsta Rap, West Coast Hip HopLabelOut of Bounds RecordsProducerKeak da Sneak, Big Hollis, Mark KnoxKeak da Sneak chronology Retaliation(2002) The Farm Boyz(2002) Copium(2003) The Farm Boyz is an album released by rapper, Keak da Sneak. It was released on October 22, 2002, for Out of Bounds Records and was produced by Keak da Sneak, Big Hollis and Mark Knox. Track list...