and the corresponding operation of symmetric functions is the usual product. Also note that the Littlewood–Richardson coefficients are the analogue of the Kronecker coefficients for representations of GLn, i.e. if we write Wλ for the irreducible representation corresponding to λ (where λ has at most n parts), one gets that
A major unsolved problem in representation theory and combinatorics is to give a combinatorial description of the Kronecker coefficients. It has been open since 1938, when Murnaghan asked for such a combinatorial description.[2] A combinatorial description would also imply that the problem is # P-complete in light of the above result.
The Kronecker coefficients can be computed as
where is the character value of the irreducible representation corresponding to integer partition on a permutation .
The Kronecker coefficients also appear in the generalized Cauchy identity
Bürgisser, Peter; Ikenmeyer, Christian (2008), "The complexity of computing Kronecker coefficients", 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc., AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 357–368, MR2721467