Juliet Mills
|
Read other articles:
Humata repens Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Polypodiophyta Kelas: Polypodiopsida Ordo: Polypodiales Famili: Davalliaceae Genus: Humata Spesies: Humata repensL. f. J. Small ex Diels, 1899 Humata repens (sinonim: Adiantum repens) adalah tumbuhan paku/pakis epifit (fern) dan termasuk ke dalam keluarga Davalliaceae. Tanaman ini epilitik pada variasi bebatuan, terkadang terestrial, di tempat yang sangat basah sampai kering di area permuk...
Insiden NiihauBagian dari Teater Pasifik Perang Dunia IIPemandangan utara Niʻihau menghadap bagian barat daya dari utara, dimana insiden tersebut terjadiTanggal7–13 Desember 1941LokasiNiihau, Teritorial HawaiiHasil Warga sipil membunuh Nishikaichi Harada melakukan bunuh diri Pihak terlibat Hawaii (warga sipil) Layanan Udara Angkatan Laut Kekaisaran Jepang Hawaii (warga sipil)Tokoh utama Hawila Kaleohano Ben Kanahele (WIA) Shigenori Nishikaichi † Yoshio Harada †Jumla...
Foolad ArenaLokasiAhvaz. IranKoordinat31°16′46″N 48°46′48″E / 31.27944°N 48.78000°E / 31.27944; 48.78000Koordinat: 31°16′46″N 48°46′48″E / 31.27944°N 48.78000°E / 31.27944; 48.78000PemilikFoolad F.C.OperatorFoolad F.C.Suite eksekutif12Kapasitas30.655[1]Ukuran lapangan105 x 68 mPermukaanRumputPapan skorLCDKonstruksiMulai pembangunan2 Desember 2011Dibuka13 November 2018Biaya$40 millionArsitekAmir Rostami saniPembang...
Part of large-scale ocean circulation A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.[1][2] The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt ...
American politician and diplomat (1774–1849) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: William Hunter senator – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) William Hunter Jr.Portrait by Charles Bird King, 18241st United States M...
Rahasia GadisSutradaraBZ KadaryonoProduserWirjaatmadja NgadimanDitulis olehWirjaatmadja NgadimanPemeranUlly ArthaYenny RachmanRoy MartenW.D MochtarFadlyMuni CaderSofia WDChandra DewiDoddy SukmaRosmiatiFuad RahmanSyafeiDina MarianaSherly MalintonDistributorEmpat Gajah FilmTanggal rilis1975Durasi119 menitNegaraIndonesia Rahasia Gadis adalah film Indonesia yang dirilis pada tahun 1975 dengan disutradarai oleh BZ Kadaryono. Film ini dibintangi antara lain oleh Ully Artha dan Yenny Rachman. Sinops...
جزء من السلسلة الاقتصادية عنالرأسمالية المفاهيم البنك مركزي القانون التجاري قانون الشركات الأفضلية النسبية قانون المنافسة قانون حماية المستهلك حقوق التأليف والنشر المؤسسة التجارية الرأسمالية المالية الحرية الاقتصادية الليبرالية الاقتصادية التنظيم المالي السياسة ال�...
American politician George Washington PeckFrom Volume 1 (1897) of Freemasonry in MichiganMember of the U.S. House of Representativesfrom Michigan's 4th districtIn officeMarch 4, 1855 – March 3, 1857Preceded byHestor L. StevensSucceeded byDe Witt C. Leach Personal detailsBorn(1818-06-04)June 4, 1818New York City, U.S.DiedJune 30, 1905(1905-06-30) (aged 87)Saginaw, Michigan, U.S.Political partyDemocratic George Washington Peck (June 4, 1818 – June 30, 1905) was a U...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mars 2009). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Comm...
Russian opera singer Vera Vasilyevna ZorinaBornVera Vasilyevna Popova1853Died1903Occupationoperetta singer Vera Vasilyevna Zorina (Russian: Вера Васильевна Зорина; real surname Popova; 1853 - 1903) was a Russian Empire operetta singer (mezzo-soprano), best known as a Russian romances (or 'Gypsy art-songs') performer. She became famous after playing the part of Stesha in the popular musical Gypsy Songs in Characters by Nikolai Kulikov. Another highly popular part of hers wa...
Undang-undang Jagung adalah tarif dan pembatasan perdagangan lainnya untuk makanan dan biji-bijian impor (jagung) yang diberlakukan di Inggris antara tahun 1815 dan 1846. Kata jagung dalam bahasa Inggris menunjukkan semua biji-bijian sereal, termasuk gandum. Mereka dirancang untuk menjaga harga biji-bijian tetap tinggi agar disukai dan menguntungkan produsen dalam negeri, dan mewakili merkantilisme Inggris. Undang-undang Jagung memblokir impor biji-bijian murah, awalnya hanya dengan melarang ...
Fictional character on Saturday Night Live Fictional character PatSaturday Night Live characterFirst appearanceSaturday Night LiveLast appearanceIt's PatPortrayed byJulia SweeneyIn-universe informationGenderUnknownOccupationVariousNationalityAmerican Pat O'Neill Riley is an androgynous fictional character[1] created and performed by Julia Sweeney for the American sketch comedy show Saturday Night Live (SNL) from 1990 to 1994.[2] The character was later featured in the film It'...
Ralph Breaks the InternetPoster perilisan teaterSutradara Rich Moore Phil Johnston ProduserClark SpencerSkenario Phil Johnston[1] Pamela Ribon[1] Cerita Rich Moore[1] Phil Johnston[1] Jim Reardon[1] Pamela Ribon[1] Josie Trinidad[1] Pemeran John C. Reilly Sarah Silverman Gal Gadot Taraji P. Henson Jack McBrayer Jane Lynch Alan Tudyk Alfred Molina Ed O'Neill Penata musikHenry Jackman[2]Sinematografer Nathan Detroit Warner (t...
Nunin geroglifici Nun, dio dell'oceano primordiale e Nunet Nun è una divinità egizia appartenente alla religione dell'antico Egitto ed era la parte maschile dell'oceano primordiale che esisteva prima che venisse creato il mondo conosciuto[1] mentre la parte femminile era rappresentata da Nunet.[2] Entrambi, secondo la teologia ermopolitana erano una delle coppie primeve che formavano l'Ogdoade ermopolitana. Narrano i Testi delle piramidi dell'Antico Regno che da questo Nun ...
Amanto Di Fausto Deputato del Regno d'ItaliaLegislaturaXXV GruppoparlamentarePopolare Sito istituzionale Dati generaliPartito politicoPartito Popolare Italiano Titolo di studioDiploma superiore ProfessioneRagioniere Amanto Di Fausto (Rocca Canterano, 9 ottobre 1878 – Roma, 30 settembre 1933) è stato un politico italiano. Biografia Originario di una famiglia piccolo borghese si diploma in ragioneria e viene assunto come impiegato statale. La sua formazione risale al periodo i...
Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...
تحتاج هذه المقالة إلى تهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا. فضلاً، ساهم في تهذيب هذه المقالة من خلال معالجة مشكلات الأسلوب فيها. (فبراير 2022) مستشفى الملك خالد التخصصي للعيون معلومات عامة نوع المبنى مستشفى تخصصي القرية أو المدينة الرياض الدولة السعودية سنة التأسيس...
Bulgarian lieutenant-general, politician and Minister of War You can help expand this article with text translated from the corresponding article in Bulgarian. (February 2019) Click [show] for important translation instructions. View a machine-translated version of the Bulgarian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than...
دائرة مجزأةمعلومات عامةفرع من مخطط بياني تعديل - تعديل مصدري - تعديل ويكي بيانات الدائرة المجزأة أو الدائرة النسبية هي رسم بياني يمثل مجموع القيم الكلية للظاهرة، فتقسم إلى قطاعات جزئية تناسب قيم المجموعات الجزئية التي تتكون منها الظاهرة، وتميز تلك القطاعات عن بعضها بألوا�...
f {\displaystyle f} adalah fungsi yang memetakan dari domain X {\displaystyle X} ke kodomain Y {\displaystyle Y} . Daerah lonjong yang berwarna kuning di dalam Y {\displaystyle Y} merupakan bayangan f {\displaystyle f} .Struktur aljabar → Teori grupTeori grup Gagasan dasar Subgrup Subgrup normal Grup hasil bagi darab langsung semi-darab langsung Homomorfisme grup kernel bayangan jumlah langsung karangan bunga sederhana hingga takhingga kontinu multiplikatif aditif siklik Abel dihedral nilp...