Jochen Mannhart (born 24 April 1960 in Metzingen) is a German physicist.
Biography
Jochen Mannhart studied physics at the University of Tübingen, Germany, from 1980 to 1986, where he also received his PhD in 1987 and his habilitation in 1994.
From 1987 to 1989, he was a visiting scientist at the IBM Thomas J. Watson Research Center in Yorktown Heights, NY. From 1989 to 1996, he was a Research Staff Member at the IBM Zurich Research Laboratory, where he was manager of the New Materials and Heterostructures research group. From 1996 to 2011, he was a chaired professor at the Center for Electronic Correlations and Magnetism at the University of Augsburg, Germany.
Mannhart’s research includes the fabrication of novel all-oxide field-effect transistors, in which phase changes can be switched at interface layers, including phase changes to superconductivity. Under his leadership, his research group has developed an improved scanning probe microscope (frequency-modulated lateral force microscopy), which features a resolution of 77 picometers. With this instrument, his group succeeded in imaging individual atoms with subatomic resolution, which was used, for example, to investigate the atomic mechanism of friction. With P. Chaudhari and D. Dimos, J. Mannhart revealed that grain alignment is key to the fabrication of high-temperature superconductors with useful critical currents, so that they are suitable for practical applications such as modern high-Tc superconducting cables. In 2019, his group discovered Thermal Laser Epitaxy (TLE), a new epitaxy technique that uses continuous-wave laser to evaporate sources of material which then condense upon a substrate.[1] Another research area is thermoelectronic generators.[2]
Dimos, D.; Chaudhari, P.; Mannhart, J.; LeGoues, F. K. (11 July 1988). "Orientation Dependence of Grain-Boundary Critical Currents inYBa2Cu3O7−δBicrystals". Physical Review Letters. 61 (2). American Physical Society (APS): 219–222. doi:10.1103/physrevlett.61.219. ISSN0031-9007. PMID10039063.
Mannhart, J.; Bosch, J.; Gross, R.; Huebener, R. P. (1 April 1987). "Two-dimensional imaging of trapped magnetic flux quanta in Josephson tunnel junctions". Physical Review B. 35 (10). American Physical Society (APS): 5267–5269. Bibcode:1987PhRvB..35.5267M. doi:10.1103/physrevb.35.5267. ISSN0163-1829. PMID9940709.