James May's Big Ideas

James May's Big Ideas
StarringJames May
Narrated byJames May
Country of originUnited Kingdom
Original languageEnglish
No. of episodes3
Production
ProducerNigel Paterson
Running time60 mins
Original release
NetworkBBC Two
Release28 September (2008-09-28) –
12 October 2008 (2008-10-12)
Related
James May's 20th Century

James May's Big Ideas is a three-part 2008 British television miniseries in which presenter James May of Top Gear fame travels the globe in search of implementations for concepts widely considered science fiction, or his big ideas.[1][2] The series was produced by the Open University and aired on BBC Two.[1]

The first episode documents his search for the ultimate form of personal transport, ranging from jetpacks to flying cars. In the second episode, May looks at bionics and robotics and if robots can exceed the boundaries of their programming. The third episode focuses on energy.[1][2]

Episode list

# Title Airdate
1"Come Fly with Me"28 September 2008 (2008-09-28)
James May travels the globe in search of his ultimate flying machine. Vehicles tested include an ekranoplan, a Jetpack, a car that can be transformed into a plane and many others.
2"Man-Machine"5 October 2008 (2008-10-05)
James May discovers if his childhood dream of a world of robots will ever become true. Episode featured ASIMO.
3"Power to the People"12 October 2008 (2008-10-12)
In the last of his Big Ideas journeys, James May sets off to find smarter, brighter and bolder ways of powering the planet for future generations. Episode featured sections on solar cars, solar power tower, ENV, wind turbine, Pelamis Wave Energy Converter (referred to as the snake), energy from wave power (see Stephen Salter), electricity generated from the tides and the latest development on nuclear fusion.

See also

References

  1. ^ a b c Reidy, Heath; Warren, Andy (1 October 2008). "REVIEWS". Professional Engineering. Retrieved 26 December 2024 – via ProQuest.
  2. ^ a b "NEWS IN BRIEF". The Independent. 2 September 2008. Retrieved 26 December 2024 – via ProQuest.


Read other articles:

Kiky SaputriKiky pada tahun 2020LahirRizhky Nurasly Saputri22 Oktober 1993 (umur 30)Kabupaten Garut, Jawa Barat, IndonesiaKebangsaanIndonesiaAlmamaterUniversitas Negeri JakartaPekerjaanPelawakpresenteraktrisTahun aktif2016—sekarangSuami/istriMuhammad Khairi ​(m. 2023)​ Kiky Saputri (lahir 22 Oktober 1993) adalah seorang pelawak, presenter, dan aktris berkebangsaan Indonesia.[1] Kehidupan awal Kiky merupakan mantan guru honorer dengan gaji 600....

 

Begijnhof Sint-Elisabeth di Kortrijk Begijnhof Kortrijk adalah sebuah beguinage yang dibangun pada tahun 1238 oleh Johanna dari Konstantinopel. Beguinage sendiri adalah kawasan tempat tinggal para beguine, yaitu wanita-wanita yang membaktikan diri untuk agama Kristen tanpa mengucapkan kaul resmi seperti halnya biarawati. Semenjak 2 Desember 1998, beguinage ini menjadi salah satu dari 13 beguinage di Belgia yang masuk ke dalam daftar Situs Warisan Dunia UNESCO. Beguine terakhir yang ada di dun...

 

Rasio bendera: 2:3 Bendera Tanzania disetujui tahun 1964. Berasal dari bendera Tanganyika dan Zanzibar. Bendera ini terbagi diagonal oleh garis hitam bersisi kuning dari ujung bawah kiri. Segitiga atas (kiri) berwarna hijau dan segitiga bawah berwarna biru. Warna hijau melambangkan tumbuhan alami yang tumbuh di negara itu. Warna emas melambangkan kekayaan mineral di negara itu. Wana hitam melambangkan orang Swahili asli di Tanzania. Warna biru melambangkan berbagai danau dan sungai juga Samu...

48 states of the United States apart from Alaska and Hawaii A map showing the contiguous United States and (in insets at the lower left) the two states that are not contiguous Map highlighting Alaska and Hawaii's geographical relationship to the contiguous United States. Alaska in red is in the upper part of the map, while Hawaii is the islands also in red to the far left. Contiguous US is near center in pale color. The contiguous United States (officially the conterminous United States) cons...

 

مستر أولمبيا 1987 معلومات عامة فترة الانعقاد 29 - 31 أكتوبر 1987 مكان الانعقاد غوتنبيرغ،  السويد المنظم الاتحاد الدولي لكمال الأجسام واللياقة البدنية (IFBB) المنطقة  العالم ترتيب النسخة 23 الموقع الرسمي الموقع الرسمي لمحترفي اتحاد IFBB قائمة الفائزين صاحب اللقب 01 ! لي هاني  ...

 

Эта статья — о Никейском Символе веры, принятом Первым Вселенским собором в 325 году. О Никео-Цареградском Символе веры, утверждённом Вторым Вселенским Собором в 381 году, см. Никео-Цареградский Символ веры. Икона, изображающая святых отцов Первого Никейского соб...

Military unit of the United States Navy This article is about the U.S. Navy squadron of 1822–1842. For the U.S. Navy West India Squadron of the American Civil War (1861–1865), see Union blockade. For British naval forces in the West Indies, see North America and West Indies Station. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: West Indi...

 

Extinct genus of hominid from the Miocene OreopithecusTemporal range: Miocene Oreopithecus bambolii fossil Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Superfamily: Hominoidea Genus: †OreopithecusGervais, 1872 Type species Oreopithecus bamboliiGervais, 1872 Oreopithecus (from the Greek ὄρος, oros and πίθηκος, pithekos, meaning hill-ape) is an extinct genus of hominoid p...

 

Azimuthal perspective map projection This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: General Perspective projection – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message) Vertical perspective from an altitude of 35,786 km over (0°, 90°W), corresponding...

Football match2022 Turkish Cup finalAtatürk Olimpiyat in Istanbul hosted the final.Event2021–22 Turkish Cup Kayserispor Sivasspor 2 3 After extra timeDate26 May 2022 (2022-05-26)VenueAtatürk Olympic Stadium, IstanbulRefereeHalil Umut Meler[1]Attendance27,798← 2021 2023 → The 2022 Turkish Cup final was a football match that decided the winner of the 2021–22 Turkish Cup, the 60th edition of Turkey's primary football cup. The match was played on 26 May 20...

 

إياد أغ غالي معلومات شخصية الميلاد 1954 (العمر 70 سنة)بوغسة  [لغات أخرى]‏  مواطنة مالي  الحياة العملية المهنة سياسي،  وجهادي  اللغات الفرنسية  الخدمة العسكرية الولاء تنظيم القاعدة  المعارك والحروب الحرب الأهلية اللبنانية،  وثورة الطوارق،  وثورة ال...

 

Jesse Eisenberg Eisenberg en 2023Información personalNombre de nacimiento Jesse Adam EisenbergNacimiento 5 de octubre de 1983 (40 años)Queens, Nueva York, Estados UnidosResidencia Bloomington Nacionalidad EstadounidenseEtnia JudíoReligión JudaísmoLengua materna Inglés estadounidense Características físicasAltura 1,71 m (5′ 7″)Cabello Castaño FamiliaCónyuge Anna Strout (matr. 2017)Pareja Mia Wasikowska (2013-2015)Hijos 1EducaciónEducado en The New SchoolUniversidad...

Puerto Rican baseball player (born 1991) Baseball player Eddie RosarioRosario with the Minnesota Twins in 2017Atlanta Braves – No. 8Left fielderBorn: (1991-09-28) September 28, 1991 (age 32)Guayama, Puerto RicoBats: LeftThrows: RightMLB debutMay 6, 2015, for the Minnesota TwinsMLB statistics (through July 20, 2024)Batting average.263Hits1,058Home runs168Runs batted in577 Teams Minnesota Twins (2015–2020) Cleveland Indians (2021) Atlanta Braves (2021–2023) Washington ...

 

Stadion Free StateStadion Taman Vodacom Informasi stadionNama lengkapStadion Free StateLokasiLokasiBloemfontein, Afrika SelatanData teknisKapasitas36.538PemakaiBloemfontein Celtic Free State Cheetahs Central CheetahsSunting kotak info • L • BBantuan penggunaan templat ini Stadion Free State yang juga dikenal sebagai Stadion Taman Vodacom (bahasa Inggris: Vodacom Park Stadium) adalah sebuah stadion berlokasi di Bloemfontein, Afrika Selatan, dan digunakan sebagai tempat penyelengg...

 

Genus of flowering plants Eleutherococcus Eleutherococcus gracilistylus Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Apiales Family: Araliaceae Subfamily: Aralioideae Genus: EleutherococcusMaxim. Species See text Synonyms Acanthopanax (Decne. & Planch.) Miq. Eleutherococcus is a genus of 38 species[1] of thorny shrubs and trees in the family Araliaceae. They are native to eastern Asia, from southeast Sibe...

Dalam nama Tionghoa ini, nama keluarganya adalah Liu. Liu Lingling— Pesenam —Informasi pribadiLahir8 November 1994 (umur 29)Fuzhou, TiongkokTempat tinggalBeijing, TiongkokTinggi165 cmDisiplinSenam trampolinTahun masuk tim nasional2009–kiniKlubProvinsi Fujian Rekam medali Senam trampolin putri Mewakili  Tiongkok Permainan Olimpiade 2020 Tokyo Tunggal Kejuaraan Dunia 2014 Florida Tunggal 2014 Florida Indah 2015 Odense Tim 2017 Sofia Tim 2015 Odense Tunggal Pesta Olahra...

 

バースィル・アサドباسل الأسد1992年ごろ出生名Bassel al-Assad渾名黄金の騎士生誕1962年3月23日シリア・ダマスカス死没1994年1月21日(1994-01-21)(31歳没)シリア・ダマスカス所属組織 シリア部門シリア陸軍軍歴1983–1994最終階級 中佐部隊2nd Special Forces Regiment, 14th Airborne DivisionRepublican Guard指揮42nd Special Forces Regiment12th Armoured Battalion, Syrian Arab Republican Guard.受賞Hero of the Republ...

 

Ann Doran nel film Lo strano amore di Marta Ivers (1946) Ann Doran (Amarillo, 28 luglio 1911 – Carmichael, 19 settembre 2000) è stata un'attrice statunitense. Indice 1 Biografia 2 Filmografia parziale 2.1 Cinema 2.2 Televisione 3 Doppiatrici italiane 4 Altri progetti 5 Collegamenti esterni Biografia Ann Lee Doran debuttò nel cinema muto all'età di quattro anni. Durante la sua carriera prese parte a oltre 500 film (compresi i cortometraggi), spesso peraltro risultando come non accreditata...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Risk and actuarial criminology – news · newspapers · books · scholar · JSTOR (March 2012) This article inc...

 

Statement relating differentiable symmetries to conserved quantities This article is about Emmy Noether's first theorem, which derives conserved quantities from symmetries. For other uses, see Noether's theorem (disambiguation). First page of Emmy Noether's article Invariante Variationsprobleme (1918), where she proved her theorem Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)} Fundamental...