The institute studies the societal implications of genomics in addition to genomics itself. The institute's research involves genomic medicine; environmental genomic analysis; clean energy; synthetic biology; and ethics, law, and economics. The institute employs over 200 people, including Nobel laureate Hamilton Smith. It was sold to the University of California, San Diego in 2022.
History
In 2004, the Center for the Advancement of Genomics (TCAG), the Institute for Biological Energy Alternatives (IBEA) and the J. Craig Venter Institute Joint Technology Center (JTC) were merged and to form the J. Craig Venter Institute (JCVI).[1]
In 1992, Craig Venter was a researcher at the National Institutes of Health (NIH). He began The Institute for Genomic Research (TIGR) during the same time and was part of the determination of the human genome.[2][3][4] Because of disagreements of how the project was being managed TIGR was excluded from the funding by NIH in 1998.[5][6] The political, personal, and ethical conflicts of the race between the public and private sectors have been notable.[2][3][4][7][8][9][10][11][12][excessive citations]
In June 2000, Venter founded The Center for the Advancement of Genomics (TCAG), a think tank for studying the ethics of human genetics and stem cells research.[19][20]
Also in 2002, Venter founded the Institute for Biological Energy Alternatives (IBEA) to investigate the use of microorganisms to produce alternate fuels (such as hydrogen) and to sequester carbon dioxide.[19] The IBEA began genomic sequencing of environmental microbial populations that might be used.[21] To provide support for these facilities, Venter created the J. Craig Venter Institute Joint Technology Center (JTC), which specialized in high throughput sequencing. To provide administrative and financial support for TIGR, TCAG, IBEA and JTC, Venter created the non-profit J. Craig Venter Science Foundation (JCVSF) to consolidate activities between its affiliated organizations.
In 2007, the institute published the first diploid human genome, i.e. the genome of a single individual (J. Craig Venter) in which both sets of chromosomes were sequenced.[22] In 2010, the institute determined the 1.08 million base pair Mycoplasma mycoides genome, which was then inserted into a cell to create the first cell with a completely synthetic genome.[23]
In April 2022 Venter sold the La Jolla facility to the University of California, San Diego for $25 million. The university, which already has a very strong genomics program, hopes to absorb most of the institute's faculty and its current research grants. Venter will continue to lead a separate nonprofit research group, also known as the J. Craig Venter Institute.[24]
^Fraser, C. M.; Gocayne, J. D.; White, O.; Adams, M. D.; Clayton, R. A.; Fleischmann, R. D.; Bult, C. J.; Kerlavage, A. R.; Sutton, G.; Kelley, J. M.; Fritchman, J. L.; Weidman, J. F.; Small, K. V.; Sandusky, M.; Fuhrmann, J.; Nguyen, D.; Utterback, T. R.; Saudek, D. M.; Phillips, C. A.; Merrick, J. M.; Tomb, J. -F.; Dougherty, B. A.; Bott, K. F.; Hu, P. -C.; Lucier, T. S.; Peterson, S. N.; Smith, H. O.; Hutchison III, C. A.; Venter, J. C. (1995). "The minimal gene complement of Mycoplasma genitalium". Science. 270 (5235): 397–403. Bibcode:1995Sci...270..397F. doi:10.1126/science.270.5235.397. PMID7569993. S2CID29825758.
^Bult, C. J.; White, O.; Olsen, G. J.; Zhou, L.; Fleischmann, R. D.; Sutton, G. G.; Blake, J. A.; Fitzgerald, L. M.; Clayton, R. A.; Gocayne, J. D.; Kerlavage, A. R.; Dougherty, B. A.; Tomb, J. -F.; Adams, M. D.; Reich, C. I.; Overbeek, R.; Kirkness, E. F.; Weinstock, K. G.; Merrick, J. M.; Glodek, A.; Scott, J. L.; Geoghagen, N. S. M.; Venter, J. F.; Fuhrmann, J. L.; Nguyen, D.; Utterback, T. R.; Kelley, J. M.; Peterson, J. D.; Sadow, P. W.; Hanna, M. C. (1996). "Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii". Science. 273 (5278): 1058–1073. Bibcode:1996Sci...273.1058B. doi:10.1126/science.273.5278.1058. PMID8688087. S2CID41481616.
^Fraser, C. M.; Norris, S. J.; Weinstock, G. M.; White, O.; Sutton, G. G.; Dodson, R.; Gwinn, M.; Hickey, E. K.; Clayton, R.; Ketchum, K. A.; Sodergren, E.; Hardham, J. M.; McLeod, M. P.; Salzberg, S.; Peterson, J.; Khalak, H.; Richardson, D.; Howell, J. K.; Chidambaram, M.; Utterback, T.; McDonald, L.; Artiach, P.; Bowman, C.; Cotton, M. D.; Fujii, C.; Garland, S.; Hatch, B.; Horst, K.; Roberts, K.; Sandusky, M. (1998). "Complete genome sequence of Treponema pallidum, the syphilis spirochete". Science. 281 (5375): 375–388. Bibcode:1998Sci...281..375F. doi:10.1126/science.281.5375.375. PMID9665876.
^White, O.; Eisen, J.; Heidelberg, J.; Hickey, E.; Peterson, J.; Dodson, R.; Haft, D.; Gwinn, M.; Nelson, W.; Richardson, D. L.; Moffat, K. S.; Qin, H.; Jiang, L.; Pamphile, W.; Crosby, M.; Shen, M.; Vamathevan, J. J.; Lam, P.; McDonald, L.; Utterback, T.; Zalewski, C.; Makarova, K. S.; Aravind, L.; Daly, M. J.; Minton, K. W.; Fleischmann, R. D.; Ketchum, K. A.; Nelson, K. E.; Salzberg, S.; Smith, H. O. (1999). "Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1". Science. 286 (5444): 1571–1577. doi:10.1126/science.286.5444.1571. PMC4147723. PMID10567266.
^Levy, S.; Sutton, G.; Ng, P. C.; Feuk, L.; Halpern, A. L.; Walenz, B. P.; Axelrod, N.; Huang, J.; Kirkness, E. F.; Denisov, G.; Lin, Y.; MacDonald, J. R.; Pang, A. W. C.; Shago, M.; Stockwell, T. B.; Tsiamouri, A.; Bafna, V.; Bansal, V.; Kravitz, S. A.; Busam, D. A.; Beeson, K. Y.; McIntosh, T. C.; Remington, K. A.; Abril, J. F.; Gill, J.; Borman, J.; Rogers, Y. H.; Frazier, M. E.; Scherer, S. W.; Strausberg, R. L. (2007). "The Diploid Genome Sequence of an Individual Human". PLOS Biology. 5 (10): e254. doi:10.1371/journal.pbio.0050254. PMC1964779. PMID17803354.
^Gibson, D.; Glass, J.; Lartigue, C.; Noskov, V.; Chuang, R.; Algire, M.; Benders, G.; Montague, M.; Ma, L.; Moodie, M. M.; Merryman, C.; Vashee, S.; Krishnakumar, R.; Assad-Garcia, N.; Andrews-Pfannkoch, C.; Denisova, E. A.; Young, L.; Qi, Z. -Q.; Segall-Shapiro, T. H.; Calvey, C. H.; Parmar, P. P.; Hutchison Ca, C. A.; Smith, H. O.; Venter, J. C. (2010). "Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome". Science. 329 (5987): 52–56. Bibcode:2010Sci...329...52G. doi:10.1126/science.1190719. PMID20488990.