For example, different sources and sinks of methane have different affinity for the 12C and 13C isotopes, which allows distinguishing between different sources by the 13C/12C ratio in methane in the air. In geochemistry, paleoclimatology and paleoceanography this ratio is called δ13C. The ratio is calculated with respect to Pee Dee Belemnite (PDB) standard:
‰
Similarly, carbon in inorganic carbonates shows little isotopic fractionation, while carbon in materials originated by photosynthesis is depleted of the heavier isotopes. In addition, there are two types of plants with different biochemical pathways; the C3 carbon fixation, where the isotope separation effect is more pronounced, C4 carbon fixation, where the heavier 13C is less depleted, and Crassulacean Acid Metabolism (CAM) plants, where the effect is similar but less pronounced than with C4 plants. Isotopic fractionation in plants is caused by physical (slower diffusion of 13C in plant tissues due to increased atomic weight) and biochemical (preference of 12C by two enzymes: RuBisCO and phosphoenolpyruvate carboxylase) factors.[2] The different isotope ratios for the two kinds of plants propagate through the food chain, thus it is possible to determine if the principal diet of a human or an animal consists primarily of C3 plants (rice, wheat, soybeans, potatoes) or C4 plants (corn, or corn-fed beef) by isotope analysis of their flesh and bone collagen (however, to obtain more accurate determinations, carbon isotopic fractionation must be also taken into account, since several studies have reported significant 13C discrimination during biodegradation of simple and complex substrates).[3][4]
Within C3 plants processes regulating changes in δ13C are well understood, particularly at the leaf level,[5] but also during wood formation.[6][7] Many recent studies combine leaf level isotopic fractionation with annual patterns of wood formation (i.e. tree ring δ13C) to quantify the impacts of climatic variations and atmospheric composition[8] on physiological processes of individual trees and forest stands.[9] The next phase of understanding, in terrestrial ecosystems at least, seems to be the combination of multiple isotopic proxies to decipher interactions between plants, soils and the atmosphere, and predict how changes in land use will affect climate change.[10]
Similarly, marine fish contain more 13C than freshwater fish, with values approximating the C4 and C3 plants respectively.
The ratio of carbon-13 and carbon-12 isotopes in these types of plants is as follows:[11]
C4 plants: −16‰ to −10‰
CAM plants: −20‰ to −10‰
C3 plants: −33‰ to −24‰
Limestones formed by precipitation in seas from the atmospheric carbon dioxide contain normal proportion of 13C. Conversely, calcite found in salt domes originates from carbon dioxide formed by oxidation of petroleum, which due to its plant origin is 13C-depleted. The layer of limestone deposited at the Permian extinction 252 Mya can be identified by the 1% drop in 13C/12C.
The 14C isotope is important in distinguishing biosynthetized materials from man-made ones. Biogenic chemicals are derived from biospheric carbon, which contains 14C. Carbon in artificially made chemicals is usually derived from fossil fuels like coal or petroleum, where the 14C originally present has decayed below detectable limits. The amount of 14C currently present in a sample therefore indicates the proportion of carbon of biogenic origin.
Nitrogen-15, or 15N, is often used in agricultural and medical research, for example in the Meselson–Stahl experiment to establish the nature of DNA replication.[12] An extension of this research resulted in development of DNA-based stable-isotope probing, which allows examination of links between metabolic function and taxonomic identity of microorganisms in the environment, without the need for culture isolation.[13][14]Proteins can be isotopically labelled by cultivating them in a medium containing 15N as the only source of nitrogen, e.g., in quantitative proteomics such as SILAC.
The ratio of stable nitrogen isotopes, 15N/14N or δ15N, tends to increase with trophic level, such that herbivores have higher nitrogen isotope values than plants, and carnivores have higher nitrogen isotope values than herbivores. Depending on the tissue being examined, there tends to be an increase of 3-4 parts per thousand with each increase in trophic level.[18] The tissues and hair of vegans therefore contain significantly lower δ15N than the bodies of people who eat mostly meat. Similarly, a terrestrial diet produces a different signature than a marine-based diet. Isotopic analysis of hair is an important source of information for archaeologists, providing clues about the ancient diets and differing cultural attitudes to food sources.[19]
A number of other environmental and physiological factors can influence the nitrogen isotopic composition at the base of the food web (i.e. in plants) or at the level of individual animals. For example, in arid regions, the nitrogen cycle tends to be more 'open' and prone to the loss of 14N, increasing δ15N in soils and plants.[20] This leads to relatively high δ15N values in plants and animals in hot and arid ecosystems relative to cooler and moister ecosystems.[21] Furthermore, elevated δ15N have been linked to the preferential excretion of 14N and reutilization of already enriched 15N tissues in the body under prolonged water stress conditions or insufficient protein intake.[22][23]
δ15N also provides a diagnostic tool in planetary science as the ratio exhibited in atmospheres and surface materials "is closely tied to the conditions under which materials form".[24]
Oxygen occurs naturally in three variants, but 17O is so rare that it is very difficult to detect (~0.04% abundant).[25] The ratio of 18O/16O in water depends on the amount of evaporation the water experienced (as 18O is heavier and therefore less likely to vaporize). As the vapor tension depends on the concentration of dissolved salts, the 18O/16O ratio shows correlation on the salinity and temperature of water. As oxygen is incorporated into the shells of calcium carbonate-secreting organisms, such sediments provide a chronological record of temperature and salinity of the water in the area.
The oxygen isotope ratio in the atmosphere varies predictably with time of year and geographic location; e.g. there is a 2% difference between 18O-rich precipitation in Montana and 18O-depleted precipitation in Florida Keys. This variability can be used for approximate determination of geographic location of origin of a material; e.g. it is possible to determine where a shipment of uranium oxide was produced. The rate of exchange of surface isotopes with the environment has to be taken in account.[26]
The oxygen isotopic signatures of solid samples (organic and inorganic) are usually measured with pyrolysis and mass spectrometry.[27] Improper or prolonged storage of samples can lead to inaccurate measurements.[27]
Sulfur has four stable isotopes, 32S, 33S, 34S, and 36S, of which 32S is the most abundant by a large margin due to the fact it is created by the very common 12C in supernovas. Sulfur isotope ratios are almost always expressed as ratios relative to 32S due to this major relative abundance (95.0%). Sulfur isotope fractionations are usually measured in terms of δ34S due to its higher abundance (4.25%) compared to the other stable isotopes of sulfur, though δ33S is also sometimes measured. Differences in sulfur isotope ratios are thought to exist primarily due to kinetic fractionation during reactions and transformations.
Sulfur isotopes are generally measured against standards; prior to 1993, the Canyon Diablotroilite standard (abbreviated to CDT), which has a 32S:34S equal to 22.220, was used as both a reference material and the zero point for the isotopic scale. Since 1993, the Vienna-CDT standard has been used as a zero point, and there are several materials used as reference materials for sulfur isotope measurements. Sulfur fractionations by natural processes measured against these standards have been shown to exist between −72‰ and +147‰,[28][29] as calculated by the following equation:
As a very redox-active element, sulfur can be useful for recording major chemistry-altering events throughout Earth's history, such as marine evaporites which reflect the change in the atmosphere's redox state brought about by the Oxygen Crisis.[32][33]
Radiogenic isotopes
Lead isotopes
Lead consists of four stable isotopes: 204Pb, 206Pb, 207Pb, and 208Pb. Local variations in uranium/thorium/lead content cause a wide location-specific variation of isotopic ratios for lead from different localities. Lead emitted to the atmosphere by industrial processes has an isotopic composition different from lead in minerals. Combustion of gasoline with tetraethyllead additive led to formation of ubiquitous micrometer-sized lead-rich particulates in car exhaust smoke; especially in urban areas the man-made lead particles are much more common than natural ones. The differences in isotopic content in particles found in objects can be used for approximate geolocation of the object's origin.[26]
Radioactive isotopes
Hot particles, radioactive particles of nuclear fallout and radioactive waste, also exhibit distinct isotopic signatures. Their radionuclide composition (and thus their age and origin) can be determined by mass spectrometry or by gamma spectrometry. For example, particles generated by a nuclear blast contain detectable amounts of 60Co and 152Eu. The Chernobyl accident did not release these particles but did release 125Sb and 144Ce. Particles from underwater bursts will consist mostly of irradiated sea salts. Ratios of 152Eu/155Eu, 154Eu/155Eu, and 238Pu/239Pu are also different for fusion and fission nuclear weapons, which allows identification of hot particles of unknown origin.
Uranium has a relatively constant isotope ratio in all natural samples with ~0.72% 235 U, some 55 ppm234 U (in secular equilibrium with its parent nuclide238 U), and the balance made up by 238 U. Isotopic compositions that diverge significantly from those values are evidence for the uranium having been subject to depletion or enrichment in some fashion or of (part of it) having participated in a nuclear fission reaction. While the latter is almost as universally due to human influence as the former two, the natural nuclear fission reactor at Oklo, Gabon was detected through a significant diversion of 235 U concentration in samples from Oklo compared to those of all other known deposits on earth. Given that 235 U is a material of proliferation concern then as now every IAEA-approved supplier of Uranium fuel keeps track of the isotopic composition of uranium to ensure none is diverted for nefarious purposes. It would thus become apparent quickly if another Uranium deposit besides Oklo proves to have once been a natural nuclear fission reactor.
Applications
Archaeological studies
In archaeological studies, stable isotope ratios have been used to track diet within the time span formation of analyzed tissues (10–15 years for bone collagen and intra-annual periods for tooth enamel bioapatite) from individuals; "recipes" of foodstuffs (ceramic vessel residues); locations of cultivation and types of plants grown (chemical extractions from sediments); and migration of individuals (dental material).[citation needed]
Forensics
With the advent of stable isotope ratio mass spectrometry, isotopic signatures of materials find increasing use in forensics, distinguishing the origin of otherwise similar materials and tracking the materials to their common source. For example, the isotope signatures of plants can be to a degree influenced by the growth conditions, including moisture and nutrient availability. In case of synthetic materials, the signature is influenced by the conditions during the chemical reaction. The isotopic signature profiling is useful in cases where other kinds of profiling, e.g. characterization of impurities, are not optimal. Electronics coupled with scintillator detectors are routinely used to evaluate isotope signatures and identify unknown sources.
A study was published demonstrating the possibility of determination of the origin of a common brown PSApackaging tape by using the carbon, oxygen, and hydrogen isotopic signature of the backing polymer, additives, and adhesive.[34]
Measurement of carbon isotopic ratios can be used for detection of adulteration of honey. Addition of sugars originated from corn or sugar cane (C4 plants) skews the isotopic ratio of sugars present in honey, but does not influence the isotopic ratio of proteins; in an unadulterated honey the carbon isotopic ratios of sugars and proteins should match.[35] As low as 7% level of addition can be detected.[36]
Nuclear explosions form 10Be by a reaction of fast neutrons with 13C in the carbon dioxide in air. This is one of the historical indicators of past activity at nuclear test sites.[37]
Isotopic fingerprints are used to study the origin of materials in the Solar System.[38] For example, the Moon's oxygen isotopic ratios seem to be essentially identical to Earth's.[39] Oxygen isotopic ratios, which may be measured very precisely, yield a unique and distinct signature for each Solar System body.[40] Different oxygen isotopic signatures can indicate the origin of material ejected into space.[41] The Moon's titanium isotope ratio (50Ti/47Ti) appears close to the Earth's (within 4 ppm).[42][43] In 2013, a study was released that indicated water in lunar magma was 'indistinguishable' from carbonaceous chondrites and nearly the same as Earth's, based on the composition of water isotopes.[38][44]
Isotope biogeochemistry has been used to investigate the timeline surrounding life and its earliest iterations on Earth. Isotopic fingerprints typical of life, preserved in sediments, have been used to suggest, but do not necessarily prove, that life was already in existence on Earth by 3.85 billion years ago.[45]
Sulfur isotope evidence has also been used to corroborate the timing of the Great Oxidation Event, during which the Earth's atmosphere experienced a measurable rise in oxygen (to about 9% of modern values[46]) for the first time about 2.3–2.4 billion years ago. Mass-independent sulfur isotope fractionations are found to be widespread in the geologic record before about 2.45 billion years ago, and these isotopic signatures have since ceded to mass-dependent fractionation, providing strong evidence that the atmosphere shifted from anoxic to oxygenated at that threshold.[47]
Modern sulfate-reducing bacteria are known to favorably reduce lighter 32S instead of 34S, and the presence of these microorganisms can measurably alter the sulfur isotope composition of the ocean.[32] Because the δ34S values of sulfide minerals is primarily influenced by the presence of sulfate-reducing bacteria,[48] the absence of sulfur isotope fractionations in sulfide minerals suggests the absence of these bacterial processes or the absence of freely available sulfate. Some have used this knowledge of microbial sulfur fractionation to suggest that minerals (namely pyrite) with large sulfur isotope fractionations relative to the inferred seawater composition may be evidence of life.[49][50] This claim is not clear-cut, however, and is sometimes contested using geologic evidence from the ~3.49 Ga sulfide minerals found in the Dresser Formation of Western Australia, which are found to have δ34S values as negative as −22‰.[51] Because it has not been proven that the sulfide and barite minerals formed in the absence of major hydrothermal input, it is not conclusive evidence of life or of the microbial sulfate reduction pathway in the Archean.[52]
^
Maberly, S. C.; Raven, J. A.; Johnston, A. M. (1992). "Discrimination between 12C and 13C by marine plants". Oecologia. 91 (4): 481. doi:10.1007/BF00650320. JSTOR4220100.
^Fernandez, Irene; Cadisch, Georg (2003). "Discrimination against13C during degradation of simple and complex substrates by two white rot fungi". Rapid Communications in Mass Spectrometry. 17 (23): 2614–2620. Bibcode:2003RCMS...17.2614F. doi:10.1002/rcm.1234. ISSN0951-4198. PMID14648898.
^Gómez-Guerrero, Armando; Silva, Lucas C. R.; Barrera-Reyes, Miguel; Kishchuk, Barbara; Velázquez-Martínez, Alejandro; Martínez-Trinidad, Tomás; Plascencia-Escalante, Francisca Ofelia; Horwath, William R. (2013). "Growth decline and divergent tree ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests". Global Change Biology. 19 (6): 1748–1758. Bibcode:2013GCBio..19.1748G. doi:10.1111/gcb.12170. ISSN1354-1013. PMID23504983. S2CID39714321.
^Radajewski, S.; McDonald, I. R.; Murrell, J. C. (2003). "Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms". Current Opinion in Biotechnology. 14 (3): 296–302. doi:10.1016/s0958-1669(03)00064-8. PMID12849783.
^Marsh, K. L.; Sims, G. K.; Mulvaney, R. L. (2005). "Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil". Biology and Fertility of Soils. 42 (2): 137–145. Bibcode:2005BioFS..42..137M. doi:10.1007/s00374-005-0004-2. S2CID6245255.
^Hobson, Keith A.; Alisauskas, Ray T.; Clark, Robert G. (1993). "Stable-Nitrogen Isotope Enrichment in Avian Tissues Due to Fasting and Nutritional Stress: Implications for Isotopic Analyses of Diet". The Condor. 95 (2): 388. doi:10.2307/1369361. JSTOR1369361.
^Hannan, Keith (1998), "Sulfur isotopes in geochemistry", Geochemistry, Encyclopedia of Earth Science, Dordrecht: Springer Netherlands, pp. 610–615, doi:10.1007/1-4020-4496-8_309, ISBN978-1-4020-4496-0
^Carter, James F.; Grundy, Polly L.; Hill, Jenny C.; Ronan, Neil C.; Titterton, Emma L.; Sleeman, Richard (2004). "Forensic isotope ratio mass spectrometry of packaging tapes". Analyst. 129 (12): 1206–1210. Bibcode:2004Ana...129.1206C. doi:10.1039/b409341k. PMID15565219.
^González Martín, I.; Marqués Macías, E.; Sánchez Sánchez, J.; González Rivera, B. (1998). "Detection of honey adulteration with beet sugar using stable isotope methodology". Food Chemistry. 61 (3): 281–286. doi:10.1016/S0308-8146(97)00101-5.
^Whitehead, Ne; Endo, S; Tanaka, K; Takatsuji, T; Hoshi, M; Fukutani, S; Ditchburn, Rg; Zondervan, A (2008). "A preliminary study on the use of (10)Be in forensic radioecology of nuclear explosion sites". Journal of Environmental Radioactivity. 99 (2): 260–70. doi:10.1016/j.jenvrad.2007.07.016. PMID17904707.
^Nield, Ted (September 2009). "Moonwalk". Geological Society of London. p. 8. Retrieved 2014-01-01.
^Zhang, Junjun; Nicolas Dauphas; Andrew M. Davis; Ingo Leya; Alexei Fedkin (25 March 2012). "The proto-Earth as a significant source of lunar material". Nature Geoscience. 5 (4): 251–255. Bibcode:2012NatGe...5..251Z. doi:10.1038/ngeo1429. S2CID38921983.
^Wacey, David; McLoughlin, Nicola; Whitehouse, Martin J.; Kilburn, Matt R. (2010-12-01). "Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone". Geology. 38 (12): 1115–1118. Bibcode:2010Geo....38.1115W. doi:10.1130/G31329.1. ISSN0091-7613.
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Gua DabarDabarska pećinaDabarLokasiDonji Dabar, Bosnia dan HerzegovinaKoordinat44°42′35″N 16°38′19″E / 44.709825°N 16.638709°E / 44.709825; 16.638709Koordinat: 44°42′35″N 16°38′19″E / 44.70...
جزء من سلسلة مقالات حولالإسلام حسب البلد الإسلام في إفريقيا أنغولا بنين بوتسوانا بوركينا فاسو بوروندي الكاميرون الرأس الأخضر أفريقيا الوسطى نشاد الجزائر جزر القمر الكونغو الديمقراطية الكونغو ساحل العاج جيبوتي مصر غينيا الاستوائية إريتريا إثيوبيا الغابون غامبيا غانا غي...
Overview of the relationship between Arnold Schwarzenegger and LGBT rights Governor Arnold Schwarzenegger at the Log Cabin Republicans' Courage To Lead Dinner held on June 29, 2006 in Hollywood, California. This article is part of a series about Arnold Schwarzenegger Film career Accolades Terminator Hasta la vista, baby I'll be back See Arnold Run Bodybuilding and business career Chairman of the President's Councilon Physical Fitness and Sports Arnold Sports Festival Arnold Strongman Classic ...
Swedish footballer This article is about the Swedish football goalkeeper. For the Swedish football defender, see Karl Svensson. Kalle Svensson Kalle Svensson in 1952Personal informationFull name Karl-Oskar SvenssonDate of birth (1925-11-11)11 November 1925Place of birth Västerlöv, SwedenDate of death 15 July 2000(2000-07-15) (aged 74)Place of death Helsingborg, SwedenPosition(s) GoalkeeperSenior career*Years Team Apps (Gls)1943–1959 Helsingborgs IF 312 (0)1959–1961 Gunnarstorps IF ...
Sekolah Bintara Infanteri Marinir(Pusat Pendidikan Infanteri)NegaraIndonesiaCabang TNI Angkatan LautTipe unitKomando PendidikanBagian dariPusdikif KodikmarMarkasKabupaten PasuruanJulukanSeba PusdikifSitus webwww.kobangdikal.mil.id Sekolah Bintara Infanteri Marinir merupakan satuan pelaksanaan dari Pusat Pendidikan Infanteri, yang memiliki tugas pokok mendidik dan membekali para siswa pendidikan pertama serta pendidikan pembentukan Bintara Marinir dengan ilmu pengetahuan dan keterampilan tenta...
International song competition Eurovision 2014 redirects here. For the junior contest, see Junior Eurovision Song Contest 2014. Eurovision Song Contest 2014#JoinUsDatesSemi-final 16 May 2014 (2014-05-06)Semi-final 28 May 2014 (2014-05-08)Final10 May 2014 (2014-05-10)HostVenueB&W HallerneCopenhagen, DenmarkPresenter(s)Lise RønneNikolaj KoppelPilou AsbækDirected byPer ZachariassenExecutive supervisorJon Ola Sand[1]Executive producerPern...
Beach handball is part of the World Games as an invitational sport since the 2001 edition. It has become an official sport of the World Games program since 2013.[1] Men's tournament From 2001 to 2009 Beach Handball was contested as a demonstration event. Since the 2013 edition the sport has been formally recognized as part of the World Games program.[2] Year Host Gold-medal match Bronze-medal match Gold Score Silver Bronze Score Fourth place 2001 Details Akita Belarus 2 – 1...
2015 soundtrack album by various artistsHome: Original Motion Picture SoundtrackSoundtrack album by various artistsReleasedMarch 13, 2015 (2015-03-13)Recorded2014–2015Studio Various The Canvas Room, London Metropolis Studios, London Westlake Studios, Los Angeles Genre Pop house R&B Length32:41Label Westbury Road Roc Nation Producer Rodney Darkchild Jerkins Paul Dawson Jacob Plant StarGate Stereotypes Tiago Singles from Home: Original Motion Picture Soundtrack Towa...
Cet article est une ébauche concernant une station de métro et Londres. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Northfields Entrée de la station. Localisation Pays Royaume-Uni Ville Londres Borough de Londres Ealing Quartier Northfields (en) Coordonnéesgéographiques 51° 29′ 58″ nord, 0° 18′ 51″ ouest Géolocalisation sur la carte : Grand Londres Cara...
Eredivisie 1958-1959 Competizione Eredivisie Sport Calcio Edizione 3ª Organizzatore Federazione calcistica dei Paesi Bassi Date dal 24 agosto 1958al 31 maggio 1959 Luogo Paesi Bassi Partecipanti 18 Risultati Vincitore Sparta Rotterdam(6º titolo) Promozioni Willem II S.H.S. Retrocessioni NOADS.H.S. Statistiche Miglior marcatore Leo Canjels (34) Incontri disputati 306 Gol segnati 1 188 (3,88 per incontro) Cronologia della competizione 1957-58 1959-60 M...
Pour les articles homonymes, voir Tsinghua. Université TsinghuaHistoireFondation 1911StatutType Université publiqueNom officiel 清华大学Régime linguistique Mandarin, AnglaisPrésident Président : Wang Xiqin, Secrétaire du parti : Qiu YongDevise 自强不息, 厚德载物(progresser inlassablement ; soutenir le monde par une vaste vertu)[1]Membre de Top Industrial Managers for Europe, Ligue C9, Fondation OpenPowerSite web www.tsinghua.edu.cnChiffres-clésÉtudiants 36&...
Athletics at the Olympics Men's 1500 metresat the Games of the II OlympiadFinish of the raceVenueBois de BoulogneDateJuly 15Competitors9 from 6 nationsWinning time4:06.2 WRMedalists Charles Bennett Great Britain Henri Deloge France John Bray United States← 18961904 → Athletics at the1900 Summer OlympicsTrack events60 mmen100 mmen200 mmen400 mmen800 mmen1500 mmen110 m hurdlesmen200 m hurdlesmen400 m hurdlesmen2500 m steeplechasemen4000 m steeplech...
This article needs additional citations for verification. Relevant discussion may be found on the talk page. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Taxation in Germany – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) Part of a series onTaxation An aspect of fiscal policy Policies Government revenue Pro...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
British politician (born 1946) The Right HonourableThe Lord Robertson of Port EllenKT GCMG PC FRSA FRSEOfficial portrait, 202010th Secretary General of NATOIn office14 October 1999 – 17 December 2003DeputySergio BalanzinoAlessandro Minuto-RizzoPreceded byJavier SolanaSucceeded byJaap de Hoop SchefferSecretary of State for DefenceIn office3 May 1997 – 11 October 1999Prime MinisterTony BlairPreceded byMichael PortilloSucceeded byGeoff HoonShadow Secretary o...
Alcoholic beverage made from fermented rice This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rice wine – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this message) Bottles of Sombai Cambodian infused rice wines Rice wine is a generic term for an alcoholic beverage ferm...
German politician (1919–2008) Annemarie RengerAnnemarie Renger in 1973President of the Bundestag West GermanyIn office13 December 1972 – 14 December 1976Preceded byKai-Uwe von HasselSucceeded byKarl CarstensVice President of the Bundestag(on proposal of the SPD-group)In office1976–1990Preceded byHermann Schmidt-VockenhausenSucceeded byHelmut Becker Personal detailsBorn(1919-10-07)7 October 1919Leipzig, GermanyDied3 March 2008(2008-03-03) (aged 88)Remagen, GermanyPolitical ...