Inverted repeat-lacking clade
Group of flowering plants
The inverted repeat-lacking clade (IRLC ) is an informal monophyletic clade of the flowering plant subfamily Faboideae . Well-known members of this clade include chickpeas , broad or fava beans , vetch , lentils , peas , wisteria , alfalfa , clover , fenugreek , liquorice , and locoweeds . The name of this clade is informal and is not assumed to have any particular taxonomic rank like the names authorized by the ICBN or the ICPN .[ 3] The clade is characterized by the loss of one of the two 25-kb inverted repeats in the plastid genome that are found in most land plants.[ 6] It is consistently resolved in molecular phylogenies .[ 1] [ 2] [ 5] [ 6] [ 7] [ 8] [ 9] [ 10] [ 11] [ 12] [ 13] The clade is predicted to have diverged from the other legume lineages 39.0±2.4 million years ago (in the Eocene ).[ 14] It includes several large, temperate genera such as Astragalus , Hedysarum , Medicago , Oxytropis , Swainsona , and Trifolium .
Description
This clade is composed of five traditional tribes (Cicereae , Fabeae , Galegeae , Hedysareae , and Trifolieae ) and several genera that were traditionally placed in the tribe Millettieae : Afgekia , Callerya , Endosamara , Sarcodum , Wisteria , and possibly Antheroporum .[ 3] The first five of these genera have been transferred to the tribe Wisterieae , so that as revised, the tribe Millettieae falls outside the IRLC clade.[ 4] The clade is defined as:
"The most inclusive crown clade exhibiting the structural mutation in the plastid genome (loss of one copy of the ~25-kb inverted repeat region) homologous with that found in Galega officinalis , Glycyrrhiza lepidota , and Vicia faba , where these taxa are extant species included in the crown clade defined by this name."[ 3]
Uses
This clade includes edible plants such as garden peas, lentils, chickpeas, licorice, alfafa, among others.
References
^ a b c Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000). "Molecular phylogeny of the "temperate herbaceous tribes" of papilionoid legumes: A supertree approach" . In Herendeen PS, Bruneau A (eds.). Advances in Legume Systematics, Part 9 . Kew, UK: Royal Botanic Gardens. pp. 277– 298. ISBN 184246017X . Archived from the original (PDF) on 2014-01-16. Retrieved 2014-01-16 .
^ a b Wojciechowski MF, Lavin M, Sanderson MJ (2004). "A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family" . Am J Bot . 91 (11): 1846– 1862. doi :10.3732/ajb.91.11.1846 . PMID 21652332 .
^ a b c d Wojciechowski MF. (2013). "Towards a new classification of Leguminosae: Naming clades using non-Linnaean phylogenetic nomenclature" . S Afr J Bot . 89 : 85– 93. doi :10.1016/j.sajb.2013.06.017 .
^ a b Compton, James A.; Schrire, Brian D.; Könyves, Kálmán; Forest, Félix; Malakasi, Panagiota; Sawai Mattapha & Sirichamorn, Yotsawate (2019). "The Callerya Group redefined and Tribe Wisterieae (Fabaceae) emended based on morphology and data from nuclear and chloroplast DNA sequences" . PhytoKeys (125): 1– 112. doi :10.3897/phytokeys.125.34877 . PMC 6610001 . PMID 31303810 .
^ a b Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, Van Wyk BE, Wojciechowski MF, Lavin M (2013). "Reconstructing the deep-branching relationships of the papilionoid legumes" . S Afr J Bot . 89 : 58– 75. doi :10.1016/j.sajb.2013.05.001 . hdl :10566/3193 .
^ a b Lavin M, Doyle JJ, Palmer JD (1990). "Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae" (PDF) . Evolution . 44 (2): 390– 402. doi :10.2307/2409416 . hdl :2027.42/137404 . JSTOR 2409416 . PMID 28564377 .
^ Liston A. (1995). "Use of the polymerase chain reaction to survey for the loss of the inverted repeat in the legume chloroplast genome" . In Crisp MD, Doyle JJ (eds.). Advances in Legume Systematics, Part 7: Phylogeny . Kew, UK: Royal Botanic Gardens. pp. 31– 40. ISBN 0947643796 . Archived from the original on 2014-01-17. Retrieved 2014-01-16 .
^ Käss E, Wink M (1996). "Molecular evolution of the Leguminosae: Phylogeny of the three subfamilies based on rbcL -sequences". Biochem Syst Ecol . 24 (5): 365– 378. Bibcode :1996BioSE..24..365K . doi :10.1016/0305-1978(96)00032-4 .
^ Sanderson MJ, Wojciechowski MF (1996). "Diversification rates in a temperate legume clade: Are there "so many species" of Astragalus (Fabaceae)?". Am J Bot . 83 (11): 1488– 1502. doi :10.2307/2446103 . JSTOR 2446103 .
^ Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997). "A phylogeny of the chloroplast gene rbcL in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation" . Am J Bot . 84 (4): 541– 554. doi :10.2307/2446030 . JSTOR 2446030 . PMID 21708606 .
^ Pennington RT, Lavin M, Ireland H, Klitgaard B, Preston J, Hu JM (2001). "Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplast trnL intron" . Syst Bot . 26 (3): 537– 556. doi :10.1043/0363-6445-26.3.537 (inactive 1 November 2024). {{cite journal }}
: CS1 maint: DOI inactive as of November 2024 (link )
^ McMahon MM, Sanderson MJ (2006). "Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes" . Syst Biol . 55 (5): 818– 836. doi :10.1080/10635150600999150 . PMID 17060202 .
^ Cardoso D, de Queiroz LP, Pennington RT, de Lima HC, Fonty É, Wojciechowski MF, Lavin M (2012). "Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages". Am J Bot . 99 (12): 1991– 2013. doi :10.3732/ajb.1200380 . PMID 23221500 .
^ Lavin M, Herendeen PS, Wojciechowski MF (2005). "Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary" . Syst Biol . 54 (4): 575– 94. doi :10.1080/10635150590947131 . PMID 16085576 .
External links