The instant center of rotation (also known as instantaneous velocity center,[1]instantaneous center, or pole of planar displacement) of a body undergoing planar movement is a point that has zero velocity at a particular instant of time. At this instant, the velocity vectors of the other points in the body generate a circular field around this center of rotation which is identical to what is generated by a pure rotation.
Planar movement of a body is often described using a plane figure moving in a two-dimensional plane. The instant center is the point in the moving plane around which all other points are rotating at a specific instant of time.
The continuous movement of a plane has an instant center for every value of the time parameter. This generates a curve called the moving centrode. The points in the fixed plane corresponding to these instant centers form the fixed centrode.
The generalization of this concept to 3-dimensional space is that of a twist around a screw. The screw has an axis which is a line in 3D space (not necessarily through the origin), the axis of rotation; the screw also has a finite pitch (a fixed translation along its axis corresponding to a rotation about the screw axis).
Pole of a planar displacement
The instant center can be considered the limiting case of the pole of a planar displacement.
The planar displacement of a body from position 1 to position 2 is defined by the combination of a planar rotation and planar translation. For any planar displacement there is a point in the moving body that is in the same place before and after the displacement. The displacement can be viewed as a rotation around this pole.
Construction for the pole of a planar displacement
First, select two points A and B in the moving body and locate the corresponding points in the two positions; see the illustration. Construct the perpendicular bisectors to the two segments A1A2 and B1B2. The intersection P of these two bisectors is the pole of the planar displacement. Notice that A1 and A2 lie on a circle around P. This is true for the corresponding positions of every point in the body.
If the two positions of a body are separated by an instant of time in a planar movement, then the pole of a displacement becomes the instant center. In this case, the segments constructed between the instantaneous positions of the points A and B become the velocity vectors VA and VB. The lines perpendicular to these velocity vectors intersect in the instant center.
The algebraic construction of the Cartesian coordinates can be arranged as follows: The midpoint between and
has the Cartesian coordinates
and the midpoint between and has the Cartesian coordinates
The two angles from to and from to measured counter-clockwise relative to the horizontal are determined by
Find the position of
Method 1:
Taking the correct branches of the tangent. Let the center of the rotation have distances and to the two midpoints. Assuming clockwise rotation (otherwise switch the sign of ):
Rewrite this as a 4 × 4 inhomogeneous system of linear equations with 4 unknowns (the two distances and the two coordinates of the center):
The coordinates of the center of the rotation are the first two components of the solution vector
Method 2:
Find equations of the bisectors of two segments A1A2 and B1B2 as follows
The equation of a straight line in point- slope form is: where is the point and is the slope.
The equation of the bisector of A1A2 is
The equation of the bisector of B1B2 is
These two bisectors intersect at so a system of 2 equations with 2unknowns and coefficients can be written
The solution of this system is
Pure translation
If the displacement between two positions is a pure translation, then the perpendicular bisectors of the segments A1B1 and A2B2 form parallel lines. These lines are considered to intersect at a point on the line at infinity, thus the pole of this planar displacement is said to "lie at infinity" in the direction of the perpendicular bisectors.
In the limit, pure translation becomes planar movement with point velocity vectors that are parallel. In this case, the instant center is said to lie at infinity in the direction perpendicular to the velocity vectors.
Instant center of a wheel rolling without slipping
Consider the planar movement of a circular wheel rolling without slipping on a linear road; see sketch 3. The wheel rotates around its axis M, which translates in a direction parallel to the road. The point of contact P of the wheel with road does not slip, which means the point P has zero velocity with respect to the road. Thus, at the instant the point P on the wheel comes in contact with the road it becomes an instant center.
The set of points of the moving wheel that become instant centers is the circle itself, which defines the moving centrode. The points in the fixed plane that correspond to these instant centers is the line of the road, which defines the fixed centrode.
The velocity vector of a point A in the wheel is perpendicular to the segment AP and is proportional to the length of this segment. In particular, the velocities of points in the wheel are determined by the angular velocity of the wheel in rotation around P. The velocity vectors of a number of points are illustrated in sketch 3 and can be calculated using the following equation:
where is velocity of point A, angular velocity of wheel and vector from point P to A.
The further a point in the wheel is from the instant center P, the proportionally larger its speed. Therefore, the point at the top of the wheel moves in the same direction as the center M of the wheel, but twice as fast, since it is twice the distance away from P. All points that are a distance equal to the radius of the wheel 'r' from point P move at the same speed as the point M but in different directions. This is shown for a point on the wheel that has the same speed as M but moves in the direction tangent to the circle around P.
Relative center of rotation for two contacting planar bodies
If two planar rigid bodies are in contact, and each body has its own distinct center of rotation, then the relative center of rotation between the bodies has to lie somewhere on the line connecting the two centers. As a result, since pure rolling can only exist when the center of rotation is at the point of contact (as seen above with the wheel on the road), it is only when the point of contact goes through the line connecting the two rotation centers that pure rolling can be achieved. This is known in involute gear design as the pitch point, where there is no relative sliding between the gears. In fact, the gearing ratio between the two rotating parts is found by the ratio of the two distances to the relative center. In the example in Sketch 4 the gearing ratio is
Instant center of rotation and mechanisms
Sketch 1 above shows a four-bar linkage where a number of instant centers of rotation are illustrated. The rigid body noted by the letters BAC is connected with links P1-A and P2-B to a base or frame.
The three moving parts of this mechanism (the base is not moving) are: link P1-A, link P2-B, and body BAC. For each of these three parts an instant center of rotation may be determined.
Considering first link P1-A: all points on this link, including point A, rotate around point P1. Since P1 is the only point not moving in the given plane it may be called the instant center of rotation for this link. Point A, at distance P1-A from P1, moves in a circular motion in a direction perpendicular to the link P1-A, as indicated by vector VA.
The same applies to link P2-B: point P2 is the instant center of rotation for this link and point B moves in the direction as indicated by vector VB.
For determining the instant center of rotation of the third element of the linkage, the body BAC, the two points A and B are used because its moving characteristics are known, as derived from the information about the links P1-A and P2-B.
The direction of speed of point A is indicated by vector VA. Its instant center of rotation must be perpendicular to this vector (as VA is tangentially located on the circumference of a circle). The only line that fills the requirement is a line colinear with link P1-A. Somewhere on this line there is a point P, the instant center of rotation for the body BAC.
What applies to point A also applies to point B, therefore this instant center of rotation P is located on a line perpendicular to vector VB, a line colinear with link P2-B. Therefore, the instant center of rotation P of body BAC is the point where the lines through P1-A and P2-B cross.
Since this instant center of rotation P is the center for all points on the body BAC for any random point, say point C, the speed and direction of movement may be determined: connect P to C. The direction of movement of point C is perpendicular to this connection. The speed is proportional to the distance to point P.
Continuing this approach with the two links P1-A and P2-B rotating around their own instant centers of rotation the centrode for instant center of rotation P may be determined. From this the path of movement for C or any other point on body BAC may be determined.
Examples of application
In biomechanical research the instant center of rotation is observed for the functioning of the joints in the upper and lower extremities.[2]
For example, in analysing the knee,[3][4][5]ankle,[6] or shoulder joints.[7][8]
Such knowledge assists in developing artificial joints and prosthesis, such as elbow [9] or finger joints.[10]
Study of the joints of horses: "...velocity vectors determined from the instant centers of rotation indicated that the joint surfaces slide on each other."[11]
Studies on turning a vessel moving through water.[12]
The braking characteristics of a car may be improved by varying the design of a brake pedal mechanism.[13]
Designing the suspension of a bicycle,[14] or of a car.[15]
In the case of the coupler link in a four-bar linkage, such as a double wishbone suspension in front view, the perpendiculars to the velocity lie along the links joining the grounded link to the coupler link. This construction is used to establish the kinematicroll center of the suspension.
^Moorehead JD, Montgomery SC, Harvey DM (Sep 2003). "Instant center of rotation estimation using the Reuleaux technique and a Lateral Extrapolation technique". J Biomech. 36 (9): 1301–7. doi:10.1016/S0021-9290(03)00156-8. PMID12893038.
^Colahan P, Piotrowski G, Poulos P (Sep 1988). "Kinematic analysis of the instant centers of rotation of the equine metacarpophalangeal joint". Am J Vet Res. 49 (9): 1560–5. PMID3223666.
العلاقات الدومينيكية السويسرية دومينيكا سويسرا دومينيكا سويسرا تعديل مصدري - تعديل العلاقات الدومينيكية السويسرية هي العلاقات الثنائية التي تجمع بين دومينيكا وسويسرا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و�...
Ancient Egyptian goddess, symbolizing Lower Egypt This article is about the Egyptian goddess. For the ancient Egyptian symbol, see Eye of Horus. Wadjit redirects here. For the Filipino rice cake, see Biko (food). WadjetAn illustration of Wadjet based on depictions in tombs.Major cult centerButoSymbolEgyptian cobra Map of the Nile Delta locating Buto. Wadjet (/ˈwædʒət/; Ancient Egyptian: wꜢḏyt Green One),[1] known to the Greek world as Uto (/ˈjuːtoʊ/; Koinē Greek: Οὐτώ...
رجاء لا تعدل هذه الصفحة هنا لأنها نسخة عن صفحة في الميتا. يمكنك تعديل الصفحة هناك. صفحة التفضيلات تتيح لك تخصيص بعض جوانب برنامج ميدياويكي الذي يقوم بتشغيل ويكيبيديا وباقي المشاريع الشقيقة الأخرى ، وهي متاحة فقط عندما تقوم بتسجيل الدخول. لتعديل تفضيلاتك قم بالنقر على رابط �...
Supreme Court of the United States38°53′26″N 77°00′16″W / 38.89056°N 77.00444°W / 38.89056; -77.00444EstablishedMarch 4, 1789; 235 years ago (1789-03-04)LocationWashington, D.C.Coordinates38°53′26″N 77°00′16″W / 38.89056°N 77.00444°W / 38.89056; -77.00444Composition methodPresidential nomination with Senate confirmationAuthorized byConstitution of the United States, Art. III, § 1Judge term lengthl...
Fly rod building is the art of constructing a fly fishing rod to match the performance desires of the individual angler. Fly rods are usually made of graphite or cane poles. There are several commercial manufacturers of fly rods, including Echo, Hardy, Zephrus, G. Loomis, Orvis, Reddington, Sage, Scott, St. Croix, Temple Fork Outfitters, and R. L. Winston; however, many individuals make fly rods for personal pleasure or profit.[1][2] Construction and assembly Rod blank Constru...
Voce principale: Calcio Catania. Calcio CataniaStagione 2012-2013Sport calcio Squadra Catania Allenatore Rolando Maran Allenatore in seconda Christian Maraner Presidente Antonino Pulvirenti Serie A8º Coppa ItaliaQuarti di finale Maggiori presenzeCampionato: Castro, Gómez (36)Totale: Castro, Gomez (39) Miglior marcatoreCampionato: Bergessio (13)Totale: Bergessio (15) Maggior numero di spettatori20 381 vs Juventus (28 ottobre 2012) Minor numero di spettatori10 922 vs Lazio (4 ...
Pesta di Rumah Simon orang Farisi dengan Rubens, c. 1618. Simon adalah seorang Farisi yang disebutkan dalam Injil Lukas (Lukas 7:36–50) sebagai tuan rumah yang mengundang Yesus untuk makan malam di rumahnya, tetapi gagal untuk menunjukkan kepadanya tanda-tanda keramahan yang lazimnya ditawarkan kepada pengunjung - ciuman salam (ayat 45), air untuk mencuci kaki-Nya (ayat 44), atau minyak untuk mengurapi kepala-Nya (ayat 46). Selama makan, seorang perempuan yang diidentifikasi sebagai seorang...
Women's 100 metre breaststroke SB9at the XVI Paralympic GamesVenueTokyo Aquatics CentreDates26 August 2021Competitors12 from 10 nationsMedalists Chantalle Zijderveld Netherlands Lisa Kruger Netherlands Keira Stephens Australia Swimming at the2020 Summer ParalympicsWomen's events50 m freestyleS4S6S8S10S11S13100 m freestyleS3S5S7S9S10S11S12200 m freestyleS5S14400 m freestyleS6S7S8S9S10S11S1350 m backstrokeS2S3S4S5100 m backstrokeS2S6S7S8S9S10S11S12S13S1450 m breasts...
У этого термина существуют и другие значения, см. Сиротинская. СтаницаСиротинская 49°15′20″ с. ш. 43°40′33″ в. д.HGЯO Страна Россия Субъект Федерации Волгоградская область Муниципальный район Иловлинский Сельское поселение Сиротинское История и география Перво...
Latvian officer This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Vilis Janums – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this message) Vilis JanumsJanums in 1943Born(1894-01-07)7 January 1894Code parish, Russian Empire (Now Bauska Municipality, Latvia)Died6 August 1981(1981-08-06...
Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...
جزء من سلسلة مقالات سياسة هولنداهولندا الدستور الدستور ميثاق مملكة الأراضي المنخفضة قانون الأحكام العامة حقوق الإنسان الملكية الملكية فيليم ألكساندر مجلس وزراء المملكة الوزراء المفوضون أروبا، كوراساو، سينت مارتن الحكومة الحكومة رئيس الوزراء (قائمة) مارك روته نائب رئيس ...
Former political party in Scotland Scottish Liberal Party Founded1859Dissolved3 March 1988Merged intoScottish Liberal DemocratsHeadquarters2 Atholl Place, EdinburghIdeologyLiberalismClassical liberalismSocial liberalismNational affiliationLiberal PartyPolitics of ScotlandPolitical partiesElections The Scottish Liberal Party, the section of the Liberal Party in Scotland, was the dominant political party of Victorian Scotland,[1] and although its importance declined with the rise o...
John Maynard Keynes (1933) Die Allgemeine Theorie der Beschäftigung, des Zinses und des Geldes (häufig auch als Allgemeine Theorie oder General Theory (vom engl. Originaltitel The General Theory of Employment, Interest and Money) bezeichnet) wurde von dem britischen Ökonomen John Maynard Keynes verfasst. Sie erschien im Februar 1936 und gilt als sein wirtschaftswissenschaftliches Hauptwerk. Das abstrakte und rein makroökonomische Werk richtet sich gegen klassische bzw. neoklassische Axiom...
الدوري الإنجليزي لكرة القدم 2017–18 تفاصيل الموسم دوري كرة القدم الإنجليزية البلد المملكة المتحدة البطل وولفرهامبتون واندررز الدوري الإنجليزي لكرة القدم 2016–17 دوري كرة القدم الإنجليزي 2018–19 تعديل مصدري - تعديل الدوري الإنجليزي لكرة القدم 2017–18 هو موسم م...
Selembar surat keputusan Raja Kildebert III Hukum Sali (bahasa Latin: Lex Salica) adalah kumpulan undang-undang hukum sipil orang Franka Sali yang disusun pada ca. 500 M oleh Klovis, raja orang Franka yang pertama. Meskipun ditulis dalam bahasa Latin atau menurut sejumlah ahli bahasa dalam bahasa semi-Prancis,[1] Hukum Sali juga memuat sejumlah kata yang disebut-sebut oleh para ahli bahasa Belanda sebagai salah satu peninggalan tertulis paling tua dalam bahasa Belanda Kuno, bahkan...
NFL team season 1996 Seattle Seahawks seasonOwnerKen BehringHead coachDennis EricksonHome fieldKingdomeResultsRecord7–9Division place5th AFC WestPlayoff finishDid not qualifyPro BowlersDE Michael SinclairAP All-ProsDT Cortez Kennedy (2nd team) ← 1995 Seahawks seasons 1997 → The 1996 Seattle Seahawks season was the franchise's 21st season in the National Football League (NFL), the 21st playing their home games at the Kingdome and the second under head coach Dennis ...
German botanist (1765–1812) Willd. redirects here. Not to be confused with Wild. Carl Ludwig WilldenowBorn(1765-08-22)22 August 1765Berlin, Kingdom of Prussia, Holy Roman EmpireDied10 July 1812(1812-07-10) (aged 46)Berlin, Kingdom of PrussiaNationalityGermanAlma materUniversity of HalleScientific careerFieldsbotanypharmacytaxonomyInstitutionsHumboldt University of Berlin Carl Ludwig Willdenow (22 August 1765 – 10 July 1812) was a German botanist, pharmacist, and plant taxono...