Infraparticle

An infraparticle is an electrically charged particle together with its surrounding cloud of soft photons—of which there are an infinite number, by virtue of the infrared divergence of quantum electrodynamics.[1] That is, it is a dressed particle rather than a bare particle. Whenever electric charges accelerate they emit Bremsstrahlung radiation, whereby an infinite number of the virtual soft photons become real particles. However, only a finite number of these photons are detectable, the remainder falling below the measurement threshold.[2]

The form of the electric field at infinity, which is determined by the velocity of a point charge, defines superselection sectors for the particle's Hilbert space. This is unlike the usual Fock space description, where the Hilbert space includes particle states with different velocities.[3]

Because of their infraparticle properties, charged particles do not have a sharp delta function density of states like an ordinary particle, but instead the density of states rises like an inverse power at the mass of the particle. These states which are very close in mass to consist of the particle together with low-energy excitations of the electromagnetic field.

Noether's theorem for gauge transformations

In electrodynamics and quantum electrodynamics, in addition to the global U(1) symmetry related to the electric charge, there are also position dependent gauge transformations.[4] Noether's theorem states that for every infinitesimal symmetry transformation that is local (local in the sense that the transformed value of a field at a given point only depends on the field configuration in an arbitrarily small neighborhood of that point), there is a corresponding conserved charge called the Noether charge, which is the space integral of a Noether density (assuming the integral converges and there is a Noether current satisfying the continuity equation).[5]

If this is applied to the global U(1) symmetry, the result

(over all of space)

is the conserved charge where ρ is the charge density. As long as the surface integral

at the boundary at spatial infinity is zero, which is satisfied if the current density J falls off sufficiently fast, the quantity Q[6][page needed] is conserved. This is nothing other than the familiar electric charge.[7][8]

But what if there is a position-dependent (but not time-dependent) infinitesimal gauge transformation where α is some function of position?

The Noether charge is now

where is the electric field.[3]

Using integration by parts,

This assumes that the state in question approaches the vacuum asymptotically at spatial infinity. The first integral is the surface integral at spatial infinity and the second integral is zero by the Gauss law. Also assume that α(r,θ,φ) approaches α(θ,φ) as r approaches infinity (in polar coordinates). Then, the Noether charge only depends upon the value of α at spatial infinity but not upon the value of α at finite values. This is consistent with the idea that symmetry transformations not affecting the boundaries are gauge symmetries whereas those that do are global symmetries. If α(θ,φ) = 1 all over the S2, we get the electric charge. But for other functions, we also get conserved charges (which are not so well known).[3]

This conclusion holds both in classical electrodynamics as well as in quantum electrodynamics. If α is taken as the spherical harmonics, conserved scalar charges (the electric charge) are seen as well as conserved vector charges and conserved tensor charges. This is not a violation of the Coleman–Mandula theorem as there is no mass gap.[9] In particular, for each direction (a fixed θ and φ), the quantity

is a c-number and a conserved quantity. Using the result that states with different charges exist in different superselection sectors,[10] the conclusion that states with the same electric charge but different values for the directional charges lie in different superselection sectors.[3]

Even though this result is expressed in terms of a particular spherical coordinates with a given origin, translations changing the origin do not affect spatial infinity.

Implication for particle behavior

The directional charges are different for an electron that has always been at rest and an electron that has always been moving at a certain nonzero velocity (because of the Lorentz transformations). The conclusion is that both electrons lie in different superselection sectors no matter how tiny the velocity is.[3] At first sight, this might appear to be in contradiction with Wigner's classification, which implies that the whole one-particle Hilbert space lies in a single superselection sector, but it is not because m is really the greatest lower bound of a continuous mass spectrum and eigenstates of m only exist in a rigged Hilbert space. The electron, and other particles like it is called an infraparticle.[11]

The existence of the directional charges is related to soft photons. The directional charge at and are the same if we take the limit as r goes to infinity first and only then take the limit as t approaches infinity. If we interchange the limits, the directional charges change. This is related to the expanding electromagnetic waves spreading outwards at the speed of light (the soft photons).

More generally, there might exist a similar situation in other quantum field theories besides QED. The name "infraparticle" still applies in those cases.

References

  1. ^ Schroer, B. (2008). "A note on infraparticles and unparticles". arXiv:0804.3563 [hep-th].
  2. ^ Kaku, M. (1993). Quantum Field Theory: A Modern Introduction. Oxford University Press. pp. 177–184, Appendix A6. ISBN 978-0-19-507652-3.
  3. ^ a b c d e Buchholz, D. (1986). "Gauss' law and the infraparticle problem". Physics Letters B. 174 (3): 331–334. Bibcode:1986PhLB..174..331B. doi:10.1016/0370-2693(86)91110-X.
  4. ^ Weyl, H. (1929). "Elektron und Gravitation I". Zeitschrift für Physik. 56 (5–6): 330–352. Bibcode:1929ZPhy...56..330W. doi:10.1007/BF01339504. S2CID 186233130.
  5. ^ Noether, E.; Tavel, M.A. (transl.) (2005). "Invariant Variation Problems". Transport Theory and Statistical Physics. 1 (3): 235–257. arXiv:physics/0503066. Bibcode:1971TTSP....1..186N. doi:10.1080/00411457108231446. S2CID 119019843.
    Translation of Noether, E. (1918). "Invariante Variationsprobleme". Nachrichten von der Königlicher Gesellschaft den Wissenschaft zu Göttingen, Math-phys. Klasse: 235–257.
  6. ^ Q is the integral of the time component of the four-current J by definition. See Feynman, R.P. (2005). The Feynman Lectures on Physics. Vol. 2 (2nd ed.). Addison-Wesley. ISBN 978-0-8053-9065-0.
  7. ^ Karatas, D.L.; Kowalski, K.L. (1990). "Noether's theorem for Local Gauge Transformations". American Journal of Physics. 58 (2): 123–131. Bibcode:1990AmJPh..58..123K. doi:10.1119/1.16219.[permanent dead link]
  8. ^ Buchholz, D.; Doplicher, S.; Longo, R (1986). "On Noether's Theorem in Quantum Field Theory". Annals of Physics. 170 (1): 1–17. Bibcode:1986AnPhy.170....1B. doi:10.1016/0003-4916(86)90086-2.
  9. ^ Coleman, S.; Mandula, J. (1967). "All Possible Symmetries of the S Matrix". Physical Review. 159 (5): 1251–1256. Bibcode:1967PhRv..159.1251C. doi:10.1103/PhysRev.159.1251.
  10. ^ Giulini, D. (2007). "Superselection Rules" (PDF). philsci-archive.pitt.edu. Retrieved 2010-02-21.
  11. ^ Buchholz, D. (1982). "The Physical State Space of Quantum Electrodynamics". Communications in Mathematical Physics. 85 (1): 49–71. Bibcode:1982CMaPh..85...49B. doi:10.1007/BF02029133. S2CID 120467701.

Read other articles:

The album chart name changed from Top Pop Albums to Billboard 200 Top Albums on September 7, 1991.[1] The highest-selling albums and EPs in the United States are ranked in the Billboard 200, which is published by Billboard magazine. The data are compiled by Nielsen Soundscan starting with the week ending on May 25, 1991, based on each album's weekly physical and digital sales. In 1991, a total of 14 albums claimed the top of the chart. One of which, American rapper Vanilla Ice's To t...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Marcello FondatoLahir(1924-01-08)8 Januari 1924Roma, ItaliaMeninggal13 November 2008(2008-11-13) (umur 84)San Felice CirceoPekerjaanPenulis naskah, sutradaraTahun aktif1958–2008 Marcello Fondato (8 Januari 1924 – 13 Novembe...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Questa voce sull'argomento contee dell'Ohio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di Sciotocontea Contea di Scioto – VedutaScioto County courthouse LocalizzazioneStato Stati Uniti Stato federato Ohio AmministrazioneCapoluogoPortsmouth Data di istituzione1803 TerritorioCoordinatedel capoluogo38°48′36″N 82°59′24″W / 38.81°N 82.99°W38.81; -82.99 (Contea di Scioto)Coordinate: 38°48′36″N 82°5...

 

Joseph Rucker Lamar Hakim Mahkamah Agung Amerika SerikatMasa jabatan3 Januari 1911 – 2 Januari 1916 Informasi pribadiKebangsaanAmerika SerikatProfesiHakimSunting kotak info • L • B Joseph Rucker Lamar adalah hakim Mahkamah Agung Amerika Serikat. Ia mulai menjabat sebagai hakim pada mahkamah tersebut pada tanggal 3 Januari 1911. Masa baktinya sebagai hakim berakhir pada tanggal 2 Januari 1916.[1] Referensi ^ Justices 1789 to Present. Washington, D.C.: Mahkamah ...

 

American intelligence officer (1916–2000) For the father of Kermit Roosevelt Jr., see Kermit Roosevelt. For other people named Kermit Roosevelt, see Kermit Roosevelt (disambiguation). Kermit Roosevelt Jr.Born(1916-02-16)February 16, 1916Buenos Aires, ArgentinaDiedJune 8, 2000(2000-06-08) (aged 84)Cockeysville, Maryland, U.S.Alma materHarvard UniversitySpouse Mary Lowe Gaddis ​(m. 1937)​Children4; including MarkParentKermit Roosevelt (father)Espionage ...

Duta Besar Indonesia untuk IndiaMerangkap BhutanLambang Kementerian Luar Negeri Republik IndonesiaPetahanaIna Hagniningtyas Krisnamurthisejak 17 November 2021KantorNew Delhi, IndiaDitunjuk olehPresiden IndonesiaPejabat perdanaSudarsonoDibentuk1950Situs webkemlu.go.id/newdelhi Berikut adalah daftar diplomat Indonesia yang pernah menjabat Duta Besar Republik Indonesia untuk India: No. Foto Nama Mulai menjabat Selesai menjabat Merangkap Diangkat oleh Ref. 1 Sudarsono 1950 1953 Birma   ...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Questa voce sull'argomento piloti di Formula 1 è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Hiroshi Fushida Nazionalità  Giappone Automobilismo Carriera Carriera in Formula 1 Stagioni 1975 Scuderie Maki GP disputati 2 (0 partenze)   Modifica dati su Wikidata · Manuale Hiroshi Fushida (Kyoto, 10 marzo 1946) è un ex pilota automobilistico giapponese. Iscritto con il team Maki al Gran Premio d'Olanda 1975, sebbene qualificato, non ri...

 

2000 historical romance novel by Julia Quinn For the Netflix adaptation, see Bridgerton. The Viscount Who Loved Me First edition coverAuthorJulia QuinnCountryUnited StatesLanguageEnglishSeriesBridgerton seriesGenreFiction, Romance, Historical fictionPublisherAvonPublication dateDecember 5, 2000Media typeMass market paperbackPages354ISBN0062353640Preceded byThe Duke and I Followed byAn Offer from a Gentleman  The Viscount Who Loved Me is a 2000 historical romance novel...

 

Leslie Richard Groves, Jr.Letjend. Leslie GrovesPengabdian Amerika SerikatLama dinas1918–1948Pangkat Letnan JenderalKesatuan Angkatan Darat Amerika SerikatManhattan ProjectPerang/pertempuranPerang Dunia IPerang Dunia IIPenghargaanDistinguished Service MedalLegion of MeritOrder of the Crown (Belgium)Companion of the Order of the Bath (Great Britain)Medal of Merit (Nikaragua)Pekerjaan lainWakil Presiden Sperry Rand Letnan Jenderal Leslie Richard Groves, Jr. (17 Agustus 1896 –...

High-pressure phase of magnesium silicate RingwooditeCrystal (~150 micrometers across) of Fo90 composition blue ringwoodite synthesized at 20 GPa and 1200 °C.GeneralCategoryNesosilicates Spinel groupFormula(repeating unit)Magnesium silicate (Mg2SiO4)IMA symbolRgd[1]Strunz classification9.AC.15Crystal systemCubicCrystal classHexoctahedral (m3m) H-M symbol: (4/m 3 2/m)Space groupFd3mUnit cella = 8.113 Å; Z = 8IdentificationColourDeep blue, also red, violet, or...

 

English journalist, television presenter and author David AaronovitchDavid Aaronovitch at Guildford Skeptics in the Pub in July 2012BornDavid Morris Aaronovitch (1954-07-08) 8 July 1954 (age 69)Hampstead, London, EnglandAlma mater Balliol College, Oxford University of Manchester Occupation(s)Journalist, broadcaster, authorChildren3Parent(s)Sam AaronovitchLavender AaronovitchRelativesOwen Aaronovitch (brother)Ben Aaronovitch (brother)Awards Columnist of the Year Orwell Prize for Poli...

 

دوري جبل طارق لكرة القدم 2017–18 تفاصيل الموسم دوري جبل طارق لكرة القدم  النسخة 119  البلد المملكة المتحدة  التاريخ بداية:25 سبتمبر 2017  نهاية:3 يونيو 2018  المنظم اتحاد جبل طارق لكرة القدم  البطل نادي لينكولن ريد إيمبس  الهابطون مانشستر 62  مباريات ملعوبة 135   �...

جائزة أستراليا الكبرى 1992 (بالإنجليزية: LVII Australian Grand Prix)‏  السباق 16 من أصل 16 في بطولة العالم لسباقات الفورمولا واحد موسم 1992 السلسلة بطولة العالم لسباقات فورمولا 1 موسم 1992  البلد أستراليا  التاريخ 8 نوفمبر 1992 مكان التنظيم حلبة أديليد ستريت، جنوب أستراليا، أستراليا ط...

 

American media advisor Katie MillerCommunications Director for the Vice PresidentIn officeMay 27, 2020 – January 20, 2021Vice PresidentMike PencePreceded byJarrod AgenSucceeded byAshley EtiennePress Secretary to the Vice PresidentIn officeOctober 1, 2019 – May 27, 2020Vice PresidentMike PencePreceded byAlyssa FarahSucceeded byDevin O'Malley Personal detailsBornKatie Rose Waldman1991 or 1992 (age 32–33)[1]Fort Lauderdale, Florida, U.S.[2]...

 

34°59′02″N 60°22′58″E / 34.983889°N 60.382778°E / 34.983889; 60.382778 قزيك (قزي) تقسيم إداري البلد إيران محافظة خراسان رضوي مقاطعة تايباد قسم باخرز السكان التعداد السكاني 108 نسمة (في سنة 2006) تعديل مصدري - تعديل   قزیك (بالفارسية: گزیک (گزی)) هي إحدى القرى التابعة لـ ريف باخرز في قسم باخر...

Branch of science or a theory concerning the origin of the universe For the Björk song, see Cosmogony (song). Cosmogenesis redirects here. For the Obscura album, see Cosmogenesis (album). The Creation of the Four Elements as published by Holland in 1589 from Ovid's book: Metamorphoses Cosmogony is any model concerning the origin of the cosmos or the universe.[1][2][3] Overview Scientific theories The Big Bang theory, which explains the Evolution of the Universe from a...

 

Maximilian WenglerBorn(1890-01-14)14 January 1890Roßwein, SaxonyDied25 April 1945(1945-04-25) (aged 55)near Pillau-NeutiefAllegiance Nazi GermanyService/branchHeerRankGeneralmajorCommands227th Infantry DivisionBattles/warsWorld War I World War IIAwardsKnight's Cross of the Iron Cross with Oak Leaves and Swords Maximilian Wengler (14 January 1890 – 25 April 1945) was a German general in the Wehrmacht during World War II. He was a recipient of the Knight's Cross of the Iron Cross w...