Inductive type

In type theory, a system has inductive types if it has facilities for creating a new type from constants and functions that create terms of that type. The feature serves a role similar to data structures in a programming language and allows a type theory to add concepts like numbers, relations, and trees. As the name suggests, inductive types can be self-referential, but usually only in a way that permits structural recursion.

The standard example is encoding the natural numbers using Peano's encoding. It can be defined in Coq as follows:

 Inductive nat : Type :=
   | 0 : nat
   | S : nat -> nat.

Here, a natural number is created either from the constant "0" or by applying the function "S" to another natural number. "S" is the successor function which represents adding 1 to a number. Thus, "0" is zero, "S 0" is one, "S (S 0)" is two, "S (S (S 0))" is three, and so on.

Since their introduction, inductive types have been extended to encode more and more structures, while still being predicative and supporting structural recursion.

Elimination

Inductive types usually come with a function to prove properties about them. Thus, "nat" may come with (in Coq syntax):

 nat_elim : (forall P : nat -> Prop, (P 0) -> (forall n, P n -> P (S n)) -> (forall n, P n)).

In words: for any predicate "P" over natural numbers, given a proof of "P 0" and a proof of "P n -> P (n+1)", we get back a proof of "forall n, P n". This is the familiar induction principle for natural numbers.

Implementations

W- and M-types

W-types are well-founded types in intuitionistic type theory (ITT).[1] They generalize natural numbers, lists, binary trees, and other "tree-shaped" data types. Let U be a universe of types. Given a type A : U and a dependent family B : AU, one can form a W-type . The type A may be thought of as "labels" for the (potentially infinitely many) constructors of the inductive type being defined, whereas B indicates the (potentially infinite) arity of each constructor. W-types (resp. M-types) may also be understood as well-founded (resp. non-well-founded) trees with nodes labeled by elements a : A and where the node labeled by a has B(a)-many subtrees.[2] Each W-type is isomorphic to the initial algebra of a so-called polynomial functor.

Let 0, 1, 2, etc. be finite types with inhabitants 11 : 1, 12, 22:2, etc. One may define the natural numbers as the W-type with f : 2U is defined by f(12) = 0 (representing the constructor for zero, which takes no arguments), and f(22) = 1 (representing the successor function, which takes one argument).

One may define lists over a type A : U as where and 11 is the sole inhabitant of 1. The value of corresponds to the constructor for the empty list, whereas the value of corresponds to the constructor that appends a to the beginning of another list.

The constructor for elements of a generic W-type has type We can also write this rule in the style of a natural deduction proof,

The elimination rule for W-types works similarly to structural induction on trees. If, whenever a property (under the propositions-as-types interpretation) holds for all subtrees of a given tree it also holds for that tree, then it holds for all trees.

In extensional type theories, W-types (resp. M-types) can be defined up to isomorphism as initial algebras (resp. final coalgebras) for polynomial functors. In this case, the property of initiality (res. finality) corresponds directly to the appropriate induction principle.[3] In intensional type theories with the univalence axiom, this correspondence holds up to homotopy (propositional equality).[4][5][6]

M-types are dual to W-types, they represent coinductive (potentially infinite) data such as streams.[7] M-types can be derived from W-types.[8]

Mutually inductive definitions

This technique allows some definitions of multiple types that depend on each other. For example, defining two parity predicates on natural numbers using two mutually inductive types in Coq:

Inductive even : nat -> Prop :=
  | zero_is_even : even O
  | S_of_odd_is_even : (forall n:nat, odd n -> even (S n))
with odd : nat -> Prop :=
  | S_of_even_is_odd : (forall n:nat, even n -> odd (S n)).

Induction-recursion

Induction-recursion started as a study into the limits of ITT. Once found, the limits were turned into rules that allowed defining new inductive types. These types could depend upon a function and the function on the type, as long as both were defined simultaneously.

Universe types can be defined using induction-recursion.

Induction-induction

Induction-induction allows definition of a type and a family of types at the same time. So, a type A and a family of types .

Higher inductive types

This is a current research area in Homotopy Type Theory (HoTT). HoTT differs from ITT by its identity type (equality). Higher inductive types not only define a new type with constants and functions that create elements of the type, but also new instances of the identity type that relate them.

A simple example is the circle type, which is defined with two constructors, a basepoint;

base : circle

and a loop;

loop : base = base.

The existence of a new constructor for the identity type makes circle a higher inductive type.

See also

  • Coinduction permits (effectively) infinite structures in type theory.

References

  1. ^ Martin-Löf, Per (1984). Intuitionistic type theory (PDF). Sambin, Giovanni. Napoli: Bibliopolis. ISBN 8870881059. OCLC 12731401.
  2. ^ Ahrens, Benedikt; Capriotti, Paolo; Spadotti, Régis (2015-04-12). Non-wellfounded trees in Homotopy Type Theory. Leibniz International Proceedings in Informatics (LIPIcs). Vol. 38. pp. 17–30. arXiv:1504.02949. doi:10.4230/LIPIcs.TLCA.2015.17. ISBN 9783939897873. S2CID 15020752.
  3. ^ Dybjer, Peter (1997). "Representing inductively defined sets by wellorderings in Martin-Löf's type theory". Theoretical Computer Science. 176 (1–2): 329–335. doi:10.1016/s0304-3975(96)00145-4.
  4. ^ Awodey, Steve; Gambino, Nicola; Sojakova, Kristina (2012-01-18). "Inductive types in homotopy type theory". arXiv:1201.3898 [math.LO].
  5. ^ Ahrens, Benedikt; Capriotti, Paolo; Spadotti, Régis (2015-04-12). Non-wellfounded trees in Homotopy Type Theory. Leibniz International Proceedings in Informatics (LIPIcs). Vol. 38. pp. 17–30. arXiv:1504.02949. doi:10.4230/LIPIcs.TLCA.2015.17. ISBN 9783939897873. S2CID 15020752.
  6. ^ Awodey, Steve; Gambino, Nicola; Sojakova, Kristina (2015-04-21). "Homotopy-initial algebras in type theory". arXiv:1504.05531 [math.LO].
  7. ^ van den Berg, Benno; Marchi, Federico De (2007). "Non-well-founded trees in categories". Annals of Pure and Applied Logic. 146 (1): 40–59. arXiv:math/0409158. doi:10.1016/j.apal.2006.12.001. S2CID 360990.
  8. ^ Abbott, Michael; Altenkirch, Thorsten; Ghani, Neil (2005). "Containers: Constructing strictly positive types". Theoretical Computer Science. 342 (1): 3–27. CiteSeerX 10.1.1.166.34. doi:10.1016/j.tcs.2005.06.002.

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أبريل 2020) منتخب تونس تحت 17 سنة لكرة السلة للسيدات  تونس منتخب تونس تحت 17 سنة لكرة السلة للسيدات التصنيف 33 ▲ 18 (16 سب�...

 

 

Untuk Nabi yang sama dari sudut pandang Agama Yahudi & Kristen, lihat Ezra dan Simon Bar Kokhba. Situs yang diperkirakan merupakan makam Uzayr di Al-Uzayr dekat Basra. Uzayr (Arab: عزيرcode: ar is deprecated , 'Uzair, Turki: ' 'Üzeyir') adalah yang disebutkan dalam Al-Qur'an surah At-Taubah ayat 30 yang dipercaya oleh orang Yahudi sebagai Putra Allah.[1] Meskipun Al-Qur'an tidak menyatakan Uzair sebagai nabi, ia dianggap sebagai nabi oleh sebagian ulama yang berdasarkan t...

 

 

Delimited medium where some stimuli can evoke neuronal responses Not to be confused with Reflexogenous zone. The receptive field, or sensory space, is a delimited medium where some physiological stimuli can evoke a sensory neuronal response in specific organisms.[1] Complexity of the receptive field ranges from the unidimensional chemical structure of odorants to the multidimensional spacetime of human visual field, through the bidimensional skin surface, being a receptive field for t...

Indian Muslim scholar and politician MawlanaSyed Ahmad HashmiMP, Rajya Sabha for Uttar PradeshIn office3 April 1974 – 2 April 1980In office5 July 1980 – 4 July 19867th General Secretary of Jamiat Ulama-e-HindIn office11 August 1973 – 28 January 1980Preceded byAsad MadniSucceeded byAsrarul Haq Qasmi PersonalBorn(1932-01-17)17 January 1932Darbhanga, Bihar and Orissa Province, British IndiaDied4 November 2001(2001-11-04) (aged 69)Delhi, IndiaReligionIslamNat...

 

 

Slotted medium access control protocol widely used in ad hoc networks Multiple Access with Collision Avoidance for Wireless (MACAW)[1] is a slotted medium access control (MAC) protocol widely used in ad hoc networks.[2] Furthermore, it is the foundation of many other MAC protocols used in wireless sensor networks (WSN).[2] The IEEE 802.11 RTS/CTS mechanism is adopted from this protocol.[3][4] It uses RTS-CTS-DS-DATA-ACK frame sequence for transferring d...

 

 

American baseball player (born 1991) Baseball player Alex WoodWood with the Los Angeles Dodgers in 2018Oakland Athletics – No. 57PitcherBorn: (1991-01-12) January 12, 1991 (age 33)Charlotte, North Carolina, U.S.Bats: RightThrows: LeftMLB debutMay 30, 2013, for the Atlanta BravesMLB statistics (through April 14, 2024)Win–loss record76–66Earned run average3.80Strikeouts1,156 Teams Atlanta Braves (2013–2015) Los Angeles Dodgers (2015–2018) Cincinnati Reds (2019) Los...

Jordi Osei-Tutu Nazionalità  Inghilterra Altezza 176 cm Peso 70 kg Calcio Ruolo Centrocampista Squadra  PAS Giannina Carriera Giovanili 20??-2015 Reading2015-2019 Arsenal Squadre di club1 2019-2020→  Bochum21 (5)2020-2021→  Cardiff City8 (0)2021-2022→  Nottingham Forest4 (0)2022→  Rotherham Utd14 (0)2022-2024 Bochum20 (0)2024-→  PAS Giannina0 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campiona...

 

 

Carlo Albini Nazionalità  Italia  Italia (dal 1946) Calcio Ruolo Difensore Termine carriera 1949 Carriera Squadre di club1 1935-1949 Brescia327 (20) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Carlo Albini (Brescia, 22 marzo 1914 – Rho, 18 novembre 1976) è stato un calciatore italiano, di ruolo terzino. Indice 1 Carriera 2 Statis...

 

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...

Fort Orange redirects here. For other uses, see Fort Orange (disambiguation). United States historic placeFort Orange Archeological SiteU.S. National Register of Historic PlacesU.S. National Historic Landmark Fort Orange in c1630 (Rensselaerswyck map detail)Show map of New YorkShow map of the United StatesLocationAlbany, New YorkCoordinates42°38′41.46″N 73°45′1.05″W / 42.6448500°N 73.7502917°W / 42.6448500; -73.7502917Built1624NRHP reference No.93...

 

 

Steam locomotive of the North British Railway NBR Class N LNER Class D25Cowlairs Works, North British Railway (NBR) No. 592Type and originPower typeSteamDesignerMatthew HolmesBuilderNorth British Railway (Cowlairs)Build date1886-1888Rebuilt 1911Total produced12SpecificationsConfiguration:​ • Whyte4-4-0Gauge4 ft 8+1⁄2 in (1,435 mm)Leading dia.3 ft 6 in (1.07 m)Coupled dia.7 ft 0 in (2.13 m)Length22 ft 4 in (6....

 

 

Giancarlo GiorgettiGiancarlo Giorgetti nel 2022 Ministro dell'economia e delle finanzeIn caricaInizio mandato22 ottobre 2022 Capo del governoGiorgia Meloni PredecessoreDaniele Franco Ministro dello sviluppo economicoDurata mandato13 febbraio 2021 –22 ottobre 2022 Capo del governoMario Draghi PredecessoreStefano Patuanelli SuccessoreAdolfo Urso[1] Vicesegretario federale della Lega per Salvini PremierIn caricaInizio mandato31 gennaio 2020 Vice diMatteo Salvini...

English merchant who assassinated Prime Minister Spencer Perceval in 1812 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: John Bellingham – news · newspapers · books · scholar · JSTOR (September 2019) (Learn how and when to remove this message) This article includes a list of references, related reading, or ...

 

 

Inez Elodhia MaharaniInez saat tampil pada Miss Earth 2011LahirInez Elodhia Maharani16 Juni 1989 (umur 34) Jakarta, IndonesiaPekerjaanArsitekperancang interiorpenyanyiTahun aktif2002–sekarangSuami/istriDony Safitra ​(m. 2021)​ Inez Elodhia Maharani (lahir 16 Juni 1989) adalah peserta kontes kecantikan dan model Indonesia. Ia berkompetisi pada kontes Miss Indonesia Earth 2010 dan meraih gelar Miss Earth Indonesia – Water,[1] serta mewakili In...

 

 

Danish film director and script writer Ole Christian Madsen. Ole Christian Madsen (born 18 June 1966) is a Danish film director and script writer. Among his most successful projects are the movies Flame & Citron, Prag, Angels in Fast Motion (da. Nordkraft) and the TV series Rejseholdet and Edderkoppen (The Spider). Madsen was a part of the Golden Year graduating from the Danish Film school as he graduated alongside Thomas Vinterberg and Per Fly. Madsen started his film career by directing...

Wines made from grapes grown in Arkansas ArkansasWine regionOfficial nameState of ArkansasTypeU.S. stateYear established1836CountryUnited StatesSub-regionsAltus AVA, Arkansas Mountain AVA, Ozark Mountain AVA[1]Climate regionHumid subtropical/continental in highlandsTotal area53,179 square miles (137,733 km2)Grapes producedCabernet Sauvignon, Catawba, Chardonnay, Concord, Edelweiss, Merlot, Müller-Thurgau, Muscadine, Niagara, Norton, Scheurebe, Seyval blanc, Verdelet, Vidal blanc...

 

 

Declaration of WarPoster filmSutradaraValérie DonzelliProduserEdouard WeilDitulis olehJérémie ElkaïmValérie DonzelliPemeranValérie DonzelliSinematograferSébastien BuchmannPenyuntingPauline GaillardDistributorWild Bunch DistributionTanggal rilis 12 Mei 2011 (2011-05-12) (Cannes) Durasi100 menitNegaraPrancisBahasaPrancisAnggaran€1.5 jutaPendapatankotor$6.5 juta[1] Declaration of War (bahasa Prancis: La Guerre est déclarée) adalah sebuah film Prancis tahun 2011 ya...

 

 

Residential institution devoted to the care of orphans This article is about the institution. For other uses, see Orphanage (disambiguation). The article's lead section may need to be rewritten. Please help improve the lead and read the lead layout guide. (August 2022) (Learn how and when to remove this message) Plaque where once stood the ruota (the wheel), the place to abandon children at the side of the Chiesa della Pietà, the church of an orphanage in Venice. The plaque cites on a Papal ...

Manuel Velázquez de León y Pérez Miembro de la Regencia del Imperio Mexicano 28 de septiembre de 1821-11 de abril de 1822Predecesor Junta Provisional GubernativaSucesor Regencia (Segundo Consejo) Información personalNacimiento Siglo XVIII Fallecimiento Siglo XIX Nacionalidad MexicanaInformación profesionalOcupación Político Lealtad Primer Imperio Mexicano Conflictos Independencia de México [editar datos en Wikidata] Manuel Velázquez de León y Pérez fue un político mexica...

 

 

艾哈邁德·蒂揚個人資料全名Ahmed Tijan Janko国家或地区卡達出生 (1995-04-28) 1995年4月28日(29歲)甘比亞班竹身高1.85公尺體重75公斤沙灘排球資料前任隊友 隊友 舍里夫·尤諾斯 榮譽 男子沙灘排球 代表  卡塔尔 夏季奧運 2020 東京 團體 亞洲運動會 2018 雅加達-巨港 男子 艾哈邁德·蒂揚·揚科(阿拉伯语:أحمد تيجان‎,1995年4月28日—)是甘比亞裔卡達籍沙灘排球運動員&#...