Importance sampling

Importance sampling is a Monte Carlo method for evaluating properties of a particular distribution, while only having samples generated from a different distribution than the distribution of interest. Its introduction in statistics is generally attributed to a paper by Teun Kloek and Herman K. van Dijk in 1978,[1] but its precursors can be found in statistical physics as early as 1949.[2][3] Importance sampling is also related to umbrella sampling in computational physics. Depending on the application, the term may refer to the process of sampling from this alternative distribution, the process of inference, or both.

Basic theory

Let be a random variable in some probability space . We wish to estimate the expected value of X under P, denoted E[X;P]. If we have statistically independent random samples , generated according to P, then an empirical estimate of E[X;P] is

and the precision of this estimate depends on the variance of X:

The basic idea of importance sampling is to sample the states from a different distribution to lower the variance of the estimation of E[X;P], or when sampling from P is difficult. This is accomplished by first choosing a random variable such that E[L;P] = 1 and that P-almost everywhere . With the variable L we define a probability that satisfies

The variable X/L will thus be sampled under P(L) to estimate E[X;P] as above and this estimation is improved when .

When X is of constant sign over Ω, the best variable L would clearly be , so that X/L* is the searched constant E[X;P] and a single sample under P(L*) suffices to give its value. Unfortunately we cannot take that choice, because E[X;P] is precisely the value we are looking for! However this theoretical best case L* gives us an insight into what importance sampling does:

to the right, is one of the infinitesimal elements that sum up to E[X;P]:

therefore, a good probability change P(L) in importance sampling will redistribute the law of X so that its samples' frequencies are sorted directly according to their weights in E[X;P]. Hence the name "importance sampling."

Importance sampling is often used as a Monte Carlo integrator. When is the uniform distribution and , E[X;P] corresponds to the integral of the real function .

Application to probabilistic inference

Such methods are frequently used to estimate posterior densities or expectations in state and/or parameter estimation problems in probabilistic models that are too hard to treat analytically. Examples include Bayesian networks and importance weighted variational autoencoders.[4]

Application to simulation

Importance sampling is a variance reduction technique that can be used in the Monte Carlo method. The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others. If these "important" values are emphasized by sampling more frequently, then the estimator variance can be reduced. Hence, the basic methodology in importance sampling is to choose a distribution which "encourages" the important values. This use of "biased" distributions will result in a biased estimator if it is applied directly in the simulation. However, the simulation outputs are weighted to correct for the use of the biased distribution, and this ensures that the new importance sampling estimator is unbiased. The weight is given by the likelihood ratio, that is, the Radon–Nikodym derivative of the true underlying distribution with respect to the biased simulation distribution.

The fundamental issue in implementing importance sampling simulation is the choice of the biased distribution which encourages the important regions of the input variables. Choosing or designing a good biased distribution is the "art" of importance sampling. The rewards for a good distribution can be huge run-time savings; the penalty for a bad distribution can be longer run times than for a general Monte Carlo simulation without importance sampling.

Consider to be the sample and to be the likelihood ratio, where is the probability density (mass) function of the desired distribution and is the probability density (mass) function of the biased/proposal/sample distribution. Then the problem can be characterized by choosing the sample distribution that minimizes the variance of the scaled sample:

It can be shown that the following distribution minimizes the above variance:[5]

Notice that when , this variance becomes 0.

Mathematical approach

Consider estimating by simulation the probability of an event , where is a random variable with cumulative distribution function and probability density function , where prime denotes derivative. A -length independent and identically distributed (i.i.d.) sequence is generated from the distribution , and the number of random variables that lie above the threshold are counted. The random variable is characterized by the Binomial distribution

One can show that , and , so in the limit we are able to obtain . Note that the variance is low if . Importance sampling is concerned with the determination and use of an alternate density function (for ), usually referred to as a biasing density, for the simulation experiment. This density allows the event to occur more frequently, so the sequence lengths gets smaller for a given estimator variance. Alternatively, for a given , use of the biasing density results in a variance smaller than that of the conventional Monte Carlo estimate. From the definition of , we can introduce as below.

where

is a likelihood ratio and is referred to as the weighting function. The last equality in the above equation motivates the estimator

This is the importance sampling estimator of and is unbiased. That is, the estimation procedure is to generate i.i.d. samples from and for each sample which exceeds , the estimate is incremented by the weight evaluated at the sample value. The results are averaged over trials. The variance of the importance sampling estimator is easily shown to be

Now, the importance sampling problem then focuses on finding a biasing density such that the variance of the importance sampling estimator is less than the variance of the general Monte Carlo estimate. For some biasing density function, which minimizes the variance, and under certain conditions reduces it to zero, it is called an optimal biasing density function.

Conventional biasing methods

Although there are many kinds of biasing methods, the following two methods are most widely used in the applications of importance sampling.

Scaling

Shifting probability mass into the event region by positive scaling of the random variable with a number greater than unity has the effect of increasing the variance (mean also) of the density function. This results in a heavier tail of the density, leading to an increase in the event probability. Scaling is probably one of the earliest biasing methods known and has been extensively used in practice. It is simple to implement and usually provides conservative simulation gains as compared to other methods.

In importance sampling by scaling, the simulation density is chosen as the density function of the scaled random variable , where usually for tail probability estimation. By transformation,

and the weighting function is

While scaling shifts probability mass into the desired event region, it also pushes mass into the complementary region which is undesirable. If is a sum of random variables, the spreading of mass takes place in an dimensional space. The consequence of this is a decreasing importance sampling gain for increasing , and is called the dimensionality effect. A modern version of importance sampling by scaling is e.g. so-called sigma-scaled sampling (SSS) which is running multiple Monte Carlo (MC) analysis with different scaling factors. In opposite to many other high yield estimation methods (like worst-case distances WCD) SSS does not suffer much from the dimensionality problem. Also addressing multiple MC outputs causes no degradation in efficiency. On the other hand, as WCD, SSS is only designed for Gaussian statistical variables, and in opposite to WCD, the SSS method is not designed to provide accurate statistical corners. Another SSS disadvantage is that the MC runs with large scale factors may become difficult, e. g. due to model and simulator convergence problems. In addition, in SSS we face a strong bias-variance trade-off: Using large scale factors, we obtain quite stable yield results, but the larger the scale factors, the larger the bias error. If the advantages of SSS does not matter much in the application of interest, then often other methods are more efficient.

Translation

Another simple and effective biasing technique employs translation of the density function (and hence random variable) to place much of its probability mass in the rare event region. Translation does not suffer from a dimensionality effect and has been successfully used in several applications relating to simulation of digital communication systems. It often provides better simulation gains than scaling. In biasing by translation, the simulation density is given by

where is the amount of shift and is to be chosen to minimize the variance of the importance sampling estimator.

Effects of system complexity

The fundamental problem with importance sampling is that designing good biased distributions becomes more complicated as the system complexity increases. Complex systems are the systems with long memory since complex processing of a few inputs is much easier to handle. This dimensionality or memory can cause problems in three ways:

In principle, the importance sampling ideas remain the same in these situations, but the design becomes much harder. A successful approach to combat this problem is essentially breaking down a simulation into several smaller, more sharply defined subproblems. Then importance sampling strategies are used to target each of the simpler subproblems. Examples of techniques to break the simulation down are conditioning and error-event simulation (EES) and regenerative simulation.

Evaluation of importance sampling

In order to identify successful importance sampling techniques, it is useful to be able to quantify the run-time savings due to the use of the importance sampling approach. The performance measure commonly used is , and this can be interpreted as the speed-up factor by which the importance sampling estimator achieves the same precision as the MC estimator. This has to be computed empirically since the estimator variances are not likely to be analytically possible when their mean is intractable. Other useful concepts in quantifying an importance sampling estimator are the variance bounds and the notion of asymptotic efficiency. One related measure is the so-called Effective Sample Size (ESS).[6]

Variance cost function

Variance is not the only possible cost function for a simulation, and other cost functions, such as the mean absolute deviation, are used in various statistical applications. Nevertheless, the variance is the primary cost function addressed in the literature, probably due to the use of variances in confidence intervals and in the performance measure .

An associated issue is the fact that the ratio overestimates the run-time savings due to importance sampling since it does not include the extra computing time required to compute the weight function. Hence, some people evaluate the net run-time improvement by various means. Perhaps a more serious overhead to importance sampling is the time taken to devise and program the technique and analytically derive the desired weight function.

Multiple and adaptive importance sampling

When different proposal distributions, , are jointly used for drawing the samples different proper weighting functions can be employed (e.g., see [7][8][9][10]). In an adaptive setting, the proposal distributions, , and are updated each iteration of the adaptive importance sampling algorithm. Hence, since a population of proposal densities is used, several suitable combinations of sampling and weighting schemes can be employed.[11][12][13][14][15][16][17]

See also

Notes

  1. ^ Kloek, T.; van Dijk, H. K. (1978). "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo" (PDF). Econometrica. 46 (1): 1–19. doi:10.2307/1913641. JSTOR 1913641.
  2. ^ Goertzle, G. (1949). "Quota Sampling and Importance Functions in Stochastic Solution of Particle Problems". Technical Report ORNL-434, Oak Ridge National Laboratory. Aecd; 2793. hdl:2027/mdp.39015086443671.
  3. ^ Kahn, H.; Harris, T. E. (1949). "Estimation of Particle Transmission by Random Sampling". Monte Carlo Method. Applied Mathematics Series. 12. National Bureau of Standards.: 27–30.
  4. ^ Burda, Yuri; Grosse, Roger; Salakhutdinov, Ruslan (2016). "Importance Weighted Autoencoders". Proceedings of the 4th International Conference on Learning Representations (ICLR). arXiv:1509.00519.
  5. ^ Rubinstein, R. Y., & Kroese, D. P. (2011). Simulation and the Monte Carlo method (Vol. 707). John Wiley & Sons.
  6. ^ Martino, Luca; Elvira, Víctor; Louzada, Francisco (2017). "Effective sample size for importance sampling based on discrepancy measures". Signal Processing. 131: 386–401. arXiv:1602.03572. doi:10.1016/j.sigpro.2016.08.025. S2CID 26317735.
  7. ^ Veach, Eric; Guibas, Leonidas J. (1995-01-01). "Optimally combining sampling techniques for Monte Carlo rendering". Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH '95. New York, NY, USA: ACM. pp. 419–428. CiteSeerX 10.1.1.127.8105. doi:10.1145/218380.218498. ISBN 978-0-89791-701-8. S2CID 207194026.
  8. ^ Owen, Art; Associate, Yi Zhou (2000-03-01). "Safe and Effective Importance Sampling". Journal of the American Statistical Association. 95 (449): 135–143. CiteSeerX 10.1.1.36.4536. doi:10.1080/01621459.2000.10473909. ISSN 0162-1459. S2CID 119761472.
  9. ^ Elvira, V.; Martino, L.; Luengo, D.; Bugallo, M.F. (2015-10-01). "Efficient Multiple Importance Sampling Estimators". IEEE Signal Processing Letters. 22 (10): 1757–1761. arXiv:1505.05391. Bibcode:2015ISPL...22.1757E. doi:10.1109/LSP.2015.2432078. ISSN 1070-9908. S2CID 14504598.
  10. ^ Elvira, Víctor; Martino, Luca; Luengo, David; Bugallo, Mónica F. (2017). "Improving population Monte Carlo: Alternative weighting and resampling schemes". Signal Processing. 131: 77–91. arXiv:1607.02758. doi:10.1016/j.sigpro.2016.07.012. S2CID 205171823.
  11. ^ Cappé, O.; Guillin, A.; Marin, J. M.; Robert, C. P. (2004-12-01). "Population Monte Carlo". Journal of Computational and Graphical Statistics. 13 (4): 907–929. doi:10.1198/106186004X12803. ISSN 1061-8600. S2CID 119690181.
  12. ^ Martino, L.; Elvira, V.; Luengo, D.; Corander, J. (2017-05-01). "Layered adaptive importance sampling". Statistics and Computing. 27 (3): 599–623. arXiv:1505.04732. doi:10.1007/s11222-016-9642-5. ISSN 0960-3174. S2CID 2508031.
  13. ^ Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008-04-25). "Adaptive importance sampling in general mixture classes". Statistics and Computing. 18 (4): 447–459. arXiv:0710.4242. doi:10.1007/s11222-008-9059-x. ISSN 0960-3174. S2CID 483916.
  14. ^ Cornuet, Jean-Marie; Marin, Jean-Michel; Mira, Antonietta; Robert, Christian P. (2012-12-01). "Adaptive Multiple Importance Sampling". Scandinavian Journal of Statistics. 39 (4): 798–812. arXiv:0907.1254. doi:10.1111/j.1467-9469.2011.00756.x. ISSN 1467-9469. S2CID 17191248.
  15. ^ Martino, L.; Elvira, V.; Luengo, D.; Corander, J. (2015-08-01). "An Adaptive Population Importance Sampler: Learning From Uncertainty". IEEE Transactions on Signal Processing. 63 (16): 4422–4437. Bibcode:2015ITSP...63.4422M. CiteSeerX 10.1.1.464.9395. doi:10.1109/TSP.2015.2440215. ISSN 1053-587X. S2CID 17017431.
  16. ^ Bugallo, Mónica F.; Martino, Luca; Corander, Jukka (2015-12-01). "Adaptive importance sampling in signal processing". Digital Signal Processing. Special Issue in Honour of William J. (Bill) Fitzgerald. 47: 36–49. doi:10.1016/j.dsp.2015.05.014.
  17. ^ Bugallo, M. F.; Elvira, V.; Martino, L.; Luengo, D.; Miguez, J.; Djuric, P. M. (July 2017). "Adaptive Importance Sampling: The past, the present, and the future". IEEE Signal Processing Magazine. 34 (4): 60–79. Bibcode:2017ISPM...34...60B. doi:10.1109/msp.2017.2699226. ISSN 1053-5888. S2CID 5619054.

References

  • Arouna, Bouhari (2004). "Adaptative Monte Carlo Method, A Variance Reduction Technique". Monte Carlo Methods and Their Applications. 10 (1): 1–24. doi:10.1515/156939604323091180. S2CID 21949573.
  • Bucklew, James Antonio (2004). Introduction to Rare Event Simulation. New York: Springer-Verlag.
  • Doucet, A.; de Freitas, N.; Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. Springer. ISBN 978-0-387-95146-1.
  • Ferrari, M.; Bellini, S. (2001). "Importance sampling simulation of turbo product codes". ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240). Vol. 9. pp. 2773–2777. doi:10.1109/ICC.2001.936655. ISBN 978-0-7803-7097-5. S2CID 5158473.
  • Mazonka, Oleg (2016). "Easy as Pi: The Importance Sampling Method". Journal of Reference. 16.
  • Oberg, Tommy (2001). Modulation, Detection, and Coding. New York: John Wiley & Sons.
  • Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 7.9.1 Importance Sampling". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8. Archived from the original on 2011-08-11. Retrieved 2011-08-12.
  • Ripley, B. D. (1987). Stochastic Simulation. Wiley & Sons.
  • Smith, P. J.; Shafi, M.; Gao, H. (1997). "Quick simulation: A review of importance sampling techniques in communication systems". IEEE Journal on Selected Areas in Communications. 15 (4): 597–613. doi:10.1109/49.585771.
  • Srinivasan, R. (2002). Importance sampling – Applications in communications and detection. Berlin: Springer-Verlag.

Read other articles:

Dewan Perwakilan Rakyat Daerah Kabupaten Ogan Komering Ulu TimurDewan Perwakilan RakyatKabupaten Ogan Komering Ulu Timur2019-2024JenisJenisUnikameral SejarahSesi baru dimulai19 Agustus 2019PimpinanKetuaH. Beni Defitson, S.IP., M.M. (Golkar) sejak 8 Oktober 2019 Wakil Ketua IIr. Hj. Juniah, M.P. (Gerindra) sejak 8 Oktober 2019 Wakil Ketua IIHermanto (PKB) sejak 8 Oktober 2019 Wakil Ketua IIIRio Susanto, S.E., M.M. (NasDem) sejak 8 Oktober 2019 KomposisiAnggota45Partai & kur...

 

 

Line of notebook computers by Apple This article is about MacBooks released from 2006 to 2012. For the 2015–2019 models, see 12-inch MacBook. For an overview of all models, see MacBook. MacBookDeveloperApple Inc.Product familyMacBookTypeSubnotebookRelease dateMay 16, 2006; 17 years ago (2006-05-16)Operating systemmacOSCPU Intel Core Duo Intel Core 2 Duo Display13.3-inch widescreen LCD, 1280 × 800 pixel resolutionPredecessoriBookSuccessorMacBook AirRelated 12-inch MacBook ...

 

 

Roddam NarasimhaLahir(1933-07-20)20 Juli 1933Meninggal14 Desember 2020(2020-12-14) (umur 87)Bengaluru, Karnataka, IndiaAlmamaterUniversitas MysoreIndian Institute of ScienceCalifornia Institute of TechnologyKarier ilmiahBidangDinamika fluidaDisertasiBeberapa Masalah Arus pada Dinamika Gas Langka[2] (1961)Pembimbing doktoralHans W. Liepmann[1]Mahasiswa doktoralK. R. Sreenivasan Roddam Narasimha (20 Juli 1933 – 14 Desember 2020) adalah seorang ilmuwan ...

تاونسفيل   الإحداثيات 19°15′44″S 146°48′57″E / 19.262222222222°S 146.81583333333°E / -19.262222222222; 146.81583333333 [1]  تاريخ التأسيس 1865  تقسيم إداري  البلد أستراليا[2][3]  خصائص جغرافية  المساحة 140.2 كيلومتر مربع  ارتفاع 6 متر  عدد السكان  عدد السكان 178649 (2016)[4 ...

 

 

Cet article est une ébauche concernant une chanteuse britannique et le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Jones. Lucie Jones Lucie Jones à Kiev, en 2017.Informations générales Nom de naissance Lucie Bethan Jones Naissance 20 mars 1991 (33 ans)Pentyrch, Pays de Galles Activité principale Chanteuse Activités annexes Manneq...

 

 

Pour les articles homonymes, voir Halévy. Pour les autres membres de la famille, voir Famille Halévy. Ludovic HalévyLudovic Halévy photographié par Paul Nadar en 1896.FonctionFauteuil 22 de l'Académie française4 décembre 1884 - 7 mai 1908Joseph d’HaussonvilleEugène BrieuxBiographieNaissance 1er janvier 1834Ancien 10e arrondissement de ParisDécès 7 mai 1908 (à 74 ans)1er arrondissement de ParisSépulture Cimetière de MontmartreNationalité françaiseFormation Lycée L...

Indian pay television channel Television channel Sony BBC EarthCountryIndiaHeadquartersMumbai, MaharashtraProgrammingLanguage(s)EnglishHindiTamilTeluguPicture format1080i (HDTV) 576i (SDTV)OwnershipOwnerCulver Max Entertainment(50%)BBC India (50%)ParentCulver Max EntertainmentSister channelsSee List of channels owned by Culver MaxHistoryLaunched6 March 2017LinksWebsitesonybbcearth.comAvailabilityStreaming mediaSonyLIVWatch Sony BBC Earth Live (India) Sony BBC Earth is an Indian pay television...

 

 

Elections in California Federal government U.S. President 1852 1856 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 Dem Rep 2000 Dem Rep 2004 Dem Rep 2008 Dem Rep 2012 Dem Rep 2016 Dem Rep 2020 Dem Rep 2024 Dem Rep U.S. Senate 1849 1850 1852 sp 1856 1857 sp 1860 1860 sp 1868 1872 1873 1873 sp 1878 1880 1885 1886 sp 1887 1891 1891 sp 1893 1895 sp 1897 1900 sp 1903 1905...

 

 

Bergen-Belsen Stèle d'entrée du camp. Présentation Type camp de concentration Gestion Date de création 1940 Créé par Troisième Reich Géré par Troisième Reich Date de fermeture 15 avril 1945 Fermé par Pris par l'armée alliée (Britanniques) Victimes Type de détenus Juifs, Tsiganes, Prisonniers politiques, marginaux. Nombre de détenus 15 000 à 60 000 Morts 150 000 Géographie Pays Allemagne Région Basse-Saxe Localité Bergen Coordonnées 52° 45′ ...

Filippo Maniero Nazionalità  Italia Altezza 185 cm Peso 85 kg Calcio Ruolo Allenatore (ex attaccante) Termine carriera 2010 - giocatore CarrieraGiovanili 1980-1983 Legnarese1983-1989 PadovaSquadre di club1 1989-1990 Padova12 (3)1990-1991 Atalanta6 (0)1991 Padova4 (1)1991-1992 Ascoli17 (4)1992-1995 Padova60 (10)1995-1996 Sampdoria25 (6)1996-1997 Verona33 (12)1997-1998 Parma10 (4)1998 Milan13 (3)1998-2002 Venezia116 (54)2002-2003...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

 

Di Britania Raya, perdana menteri adalah kepala pemerintahan, yang menjalankan banyak fungsi eksekutif yang ditetapkan oleh Baginda, yang merupakan kepala negara. Berdasarkan kebiasaan, perdana menteri dan kabinet (yang dikepalai oleh perdana menteri) bertanggungjawab atas kebijakannya kepada parlemen, yang mana mereka merupakan anggota berdasarkan konvensi (modern). Perdana Menteri Britania Raya saat ini adalah Rishi Sunak yang menjabat sejak 25 Oktober 2022 . Berikut adalah daftar perdana m...

Ekranoplan kendaran gabungan kelebihan kapal dan pesawat. Sebuah ekranoplan (bahasa Rusia: экранопла́н) adalah sebuah kendaraan menyerupai pesawat terbang, tetapi beroperasi atas efek tanah. Efek ini dapat diarasakan ketikan mendarat dalam sebuah penerbangan komersial; sesaat sebelum mendarat, kecepatan merendah dapat dirasakan berkurang. Kendaraan Ground effect (GEV) terbang dapat terbang di permukaan datar apa pun, dengan ketinggian dari permukaan tanah bervariasi sesuai deng...

 

 

  本文為介紹塔吉克斯坦共和國的塔吉克語。關於中國塔吉克族採用的語言,請參看色勒库尔语和瓦罕语。关于日本游戏魔塔大陆系列出现的架空语言,请参看Hymmnos语。 塔吉克语тоҷикӣ/tojikī, تاجیکی‎使用西里爾字母及波斯字母(波斯体)所寫的Tojikī母语国家和地区塔吉克斯坦、伊朗、阿富汗、哈萨克斯坦、吉尔吉斯斯坦、俄罗斯、土库曼斯坦、乌克兰、�...

 

 

American manufacturer of outdoor power equipment This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: MTD Holdings – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this message) MTD Products Inc.Company typeSubsidiaryIndustryLawn maintenanceTree careLandscape maintenanceFoun...

Questa voce o sezione sull'argomento nobili britannici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Bess Harvey ritratta da Joshua Reynolds Elizabeth Cavendish, Duchessa di Devonshire (nata Elizabeth Christiana Hervey; poi Lady Elizabeth Foster; St Edmundsbury, 13 maggio 1759 – Roma, 30 marzo 1824), è stata una nobildonna inglese. Indice 1 Vita 2 F...

 

 

Polish footballer Karol Fila Fila in 2018 with Lechia GdańskPersonal informationDate of birth (1998-06-13) 13 June 1998 (age 26)Place of birth Gdańsk, PolandHeight 1.83 m (6 ft 0 in)Position(s) Right-backTeam informationCurrent team StrasbourgNumber 4Youth career Żuławy Nowy Dwór Gdański2011–2014 AP Lechia Gdańsk2014–2017 Lechia GdańskSenior career*Years Team Apps (Gls)2014–2016 Lechia Gdańsk II 2017–2021 Lechia Gdańsk 87 (3)2017–2018 → Chojniczanka (...

 

 

Jimmy HullJimmy Hull con la maglia di Ohio StateNazionalità Stati Uniti Altezza180 cm Pallacanestro CarrieraGiovanili 1936-1939 Ohio St. Buckeyes Carriera da allenatore  Ohio St. Buckeyes Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Jimmy Hull, vero nome James R. Hull (Leesburg, 15 febbraio 1917 – Columbus, 2 novembre 1991[1]), è stato un cestista e allenatore di pallacanestro statunitense. Indice 1 Carriera 2 ...

Deciding between multiple options For other uses, see Choice (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (April 2015) (Lear...

 

 

South Slavic language This article is about the language. For other uses, see Serbo-Croatian (disambiguation). Serbo-Croatian srpskohrvatski / hrvatskosrpski српскохрватски / хрватскосрпски Native toSerbia, Croatia, Bosnia and Herzegovina, Montenegro, and KosovoEthnicityBosniaksCroatsMontenegrinsSerbsNative speakers18 million (2011–2021)[1]Language familyIndo-European Balto-SlavicSlavicSouth SlavicWestern South SlavicSerbo-CroatianStandard forms...