Icosian calculus

The icosian calculus is a non-commutative algebraic structure discovered by the Irish mathematician William Rowan Hamilton in 1856.[1][2] In modern terms, he gave a group presentation of the icosahedral rotation group by generators and relations.

Hamilton's discovery derived from his attempts to find an algebra of "triplets" or 3-tuples that he believed would reflect the three Cartesian axes. The symbols of the icosian calculus correspond to moves between vertices on a dodecahedron. (Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by duality. This is the origin of the name "icosian".[3]) Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and Hamiltonian path in graph theory.[4] He also invented the icosian game as a means of illustrating and popularising his discovery.

Informal definition

Stereographic projection of dodecahedron used for Hamilton's icosian game

The algebra is based on three symbols, , , and , that Hamilton described as "roots of unity", by which he meant that repeated application of any of them a particular number of times yields the identity, which he denoted by 1. Specifically, they satisfy the relations,

Hamilton gives one additional relation between the symbols,

which is to be understood as application of followed by application of . Hamilton points out that application in the reverse order produces a different result, implying that composition or multiplication of symbols is not generally commutative, although it is associative. The symbols generate a group of order 60, isomorphic to the group of rotations of a regular icosahedron or dodecahedron, and therefore to the alternating group of degree five. This, however, is not how Hamilton described them.

Hamilton drew comparisons between the icosians and his system of quaternions, but noted that, unlike quaternions, which can be added and multiplied, obeying a distributive law, the icosians could only, as far as he knew, be multiplied.

Hamilton understood his symbols by reference to the dodecahedron, which he represented in flattened form as a graph in the plane. The dodecahedron has 30 edges, and if arrows are placed on edges, there are two possible arrow directions for each edge, resulting in 60 directed edges. Each symbol corresponds to a permutation of the set of directed edges.

Geometrical illustration of operation iota in icosian calculus
  • The icosian symbol reverses the arrow on every edge. Hence , representing an edge with an arrow pointing from to is transformed into . Similarly, applying to produces , and to produces .
  • The icosian symbol , applied to an edge, produces the edge with the same endpoint that is encountered first as one moves around the endpoint in the anticlockwise direction. Hence applying to produces , to produces , and to produces .
  • The icosian symbol applied to an edge produces the edge that results from making a right turn at the end point. Hence applying to produces , to produces , and to produces . Comparing the results of applying and to the same edge exhibits the rule .

It is useful to define the symbol for the operation that produces the edge that results from making a left turn at the endpoint of the edge to which the operation is applied. This symbol satisfies the relations

For example, the edge obtained by making a left turn from is . Indeed, applied to produces and applied to produces . Also, applied to produces and applied to produces .

These permutations are not rotations of the dodecahedron. Nevertheless, the group of permutations generated by these symbols is isomorphic to the rotation group of the dodecahedron, a fact that can be deduced from a specific feature of symmetric cubic graphs, of which the dodecahedron graph is an example. The rotation group of the dodecahedron has the property that for a given directed edge there is a unique rotation that sends that directed edge to any other specified directed edge. Hence by choosing a reference edge, say , a one-to-one correspondence between directed edges and rotations is established: let be the rotation that sends the reference edge to directed edge . (Indeed, there are 60 directed edges and 60 rotations.) The rotations are permutations of the set of directed edges of a different sort. Let denote the image of edge under the rotation . The icosian associated to sends the reference edge to the same directed edge as does , namely to . The result of applying that icosian to any other edge is .[5]

Application to Hamiltonian circuits on the edges of the dodecahedron

A word consisting of the symbols and corresponds to a sequence of right and left turns in the graph. Specifying such a word along with an initial directed edge therefore specifies a directed path along the edges of the dodecahedron. If the group element represented by the word equals the identity, then the path returns to the initial directed edge in the final step. If the additional requirement is imposed that every vertex of the graph be visited exactly once—specifically that every vertex occur exactly once as the endpoint of a directed edge in the path—then a Hamiltonian circuit is obtained. Finding such a circuit was one of the challenges posed by Hamilton's icosian game. Hamilton exhibited the word with the properties described above.[5] Any of the 60 directed edges may serve as initial edge as a consequence of the symmetry of the dodecahedron, but only 30 distinct Hamiltonian circuits are obtained in this way, up to shift in starting point, because the word consists of the same sequence of 10 left and right turns repeated twice. The word with the roles of and interchanged has the same properties, but these give the same Hamiltonian cycles, up to shift in initial edge and reversal of direction.[3] Hence Hamilton's word accounts for all Hamiltonian cycles in the dodecahedron, whose number is known to be 30.

Legacy

The icosian calculus is one of the earliest examples of many mathematical ideas, including:

See also

References

  1. ^ William Rowan Hamilton (1856). "Memorandum respecting a new System of Roots of Unity" (PDF). Philosophical Magazine. 12: 446.
  2. ^ Thomas L. Hankins (1980). Sir William Rowan Hamilton. Baltimore: The Johns Hopkins University Press. p. 474. ISBN 0-8018-6973-0.
  3. ^ a b Sowell, Katye O. (2001), "Hamilton's icosian calculus and his icosian game", Humanistic Mathematics Network Journal, 1 (24), Article 14, doi:10.5642/hmnj.200101.24.14, archived from the original on 11 March 2024, retrieved 25 April 2024
  4. ^ a b Norman L. Biggs; E. Keith Lloyd; Robin J. Wilson (1976). Graph theory 1736–1936. Oxford: Clarendon Press. p. 239. ISBN 0-19-853901-0.
  5. ^ a b Biggs, Norman (1995). "The Icosian Calculus of Today". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 95A: 23–34. JSTOR 20490184.
  6. ^ Jones, Gareth (1995). "Dessins d'enfants: bipartite maps and Galois groups". Séminaire Lotharingien de Combinatoire. B35d: 4.
  7. ^ W. R. Hamilton, Letter to John T. Graves "On the Icosian" (17 October 1856), Mathematical papers, Vol. III, Algebra, eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 612–625.

Read other articles:

2012 2022 Élections législatives de 2017 dans le Tarn 3 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Campagne 22 mai au 10 juin12 juin au 16 juin Corps électoral et résultats Inscrits 291 226 Votants au 1er tour 160 117   54,99 %  9,7 Votes exprimés au 1er tour 155 282 Votes blancs au 1er tour 3 082 Votes nuls au 1er tour 1 753 Votants au 2d tour 141 670   49,65R...

 

County in Kansas, United States County in KansasHarper CountyCountyHarper County Courthouse in Anthony (2015)Location within the U.S. state of KansasKansas's location within the U.S.Coordinates: 37°12′N 98°05′W / 37.200°N 98.083°W / 37.200; -98.083Country United StatesState KansasFoundedFebruary 26, 1867Named forMarion HarperSeatAnthonyLargest cityAnthonyArea • Total803 sq mi (2,080 km2) • Land801 sq mi...

 

Ne doit pas être confondu avec Musique folklorique. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (novembre 2008). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En p...

Position in the upper house of Polish parliament Deputy Marshal of the Senate of the Republic of PolandWicemarszałek Senatu Rzeczypospolitej PolskiejPresidum of the SenateSeatSejm and Senate Complex of Poland, WarsawAppointerThe SenateInaugural holderJakub Bojko, Jan Woźnicki, Antoni StychelFormation1922Politics of Poland Government Constitution of Poland Law Human rights Legislature Parliament of Poland Current Parliament Sejm Marshal Szymon Hołownia (PL2050) Deputy Marshals Senate Marsha...

 

German lyrical poet and hymnwriter Simon DachBorn(1605-07-29)29 July 1605Memel, Duchy of PrussiaDied15 April 1659(1659-04-15) (aged 53)Königsberg, Duchy of PrussiaOccupationProfessorpoetNationalityGermanCitizenshipPrussianGenreBaroque Simon Dach (29 July 1605 – 15 April 1659) was a German lyrical poet and hymnwriter, born in Memel, Duchy of Prussia (now Klaipėda in Lithuania). Early life Although brought up in humble circumstances (his father was a poorly paid court interpreter for L...

 

Miguel de IcazaMiguel de Icaza di Konferensi MySQL pada tahun 2005Lahir23 November 1972 (umur 51)KebangsaanMeksiko, Amerika SerikatTempat kerjaMicrosoftOrganisasiGNOMEDikenal atasProyek GNOME, inisiator Mono, dan Xamarin Miguel de Icaza (lahir pada tahun 1972) adalah seorang pemrogram berkebangsaan Meksiko-Amerika Serikat. Ia dikenal atas proyek GNOME, Mono Framework, dan Xamarin. Kehidupan awal Miguel de Icaza lahir di Kota Meksiko dan bersekolah di National Autonomous University of Me...

Stranger ThingsMusim 4Poster promosiDibintangi Winona Ryder David Harbour Millie Bobby Brown Finn Wolfhard Gaten Matarazzo Caleb McLaughlin Noah Schnapp Sadie Sink Natalia Dyer Charlie Heaton Joe Keery Maya Hawke Brett Gelman Priah Ferguson Matthew Modine Paul Reiser Negara asalAmerika SerikatJml. episode9RilisJaringan asliNetflixTanggal disiarkan27 Mei (2022-05-27) –1 Juli 2022 (2022-7-1)Kronologi Musim← SebelumnyaMusim 3 Stranger Things (musim 4) merupakan serial tel...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Templat:User-generated Beberapa atau seluruh referensi dari artikel ini mungkin tidak dapat dipercaya kebenarannya. Bantulah dengan memberikan referensi yang lebih baik atau dengan memeriksa apakah referensi telah memenuhi syarat sebagai referensi tepercaya. Referensi yang tidak benar...

 

People's Revolutionary Government of the Republic of China redirects here. For the government of the People's Republic of China, see Government of the People's Republic of China. For other uses, see Government of China (disambiguation). Anti-Kuomintang government in Fujian, China 1933-1934 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Fujian...

American college football season 1984 BYU Cougars footballConsensus national championWAC championHoliday Bowl championHoliday Bowl, W 24–17 vs. MichiganConferenceWestern Athletic ConferenceRankingCoachesNo. 1APNo. 1Record13–0 (8–0 WAC)Head coachLaVell Edwards (13th season)Offensive coordinatorRoger French (4th season)Offensive schemeWest CoastDefensive coordinatorDick Felt (10th season)Base defense3–4Home stadiumCougar StadiumSeasons← ...

 

Transitional Iberian dialect Montañés redirects here. For more uses, see Montañés (name). This article should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support templates may also be used. See why. (October 2020) Cantabriancántabru, montañésNative toSpa...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Disambiguazione – UML rimanda qui. Se stai cercando altri significati, vedi UML (disambigua). Raccolta di diagrammi UML In ingegneria del software, UML (Unified Modeling Language, linguaggio di modellizzazione unificato) è un linguaggio di modellazione e di specifica basato sul paradigma orientato agli oggetti. Il nucleo del linguaggio fu definito nel 1996 da Grady Booch, Jim Rumbaugh e Ivar Jacobson (detti i tre amigos) sotto l'egida dell'Object Management Group (OMG), consorzio ...

 

For other uses, see Bangil. Regency in Bali, IndonesiaRegency of Bangli Kabupaten Bangli(Indonesian)Kabupatén Baṅli(Balinese Alphabet) RegencyRegional transcription(s) • Balinese Scriptᬓᬩᬸᬧᬢᬾᬦ᭄ᬩᬂᬮᬶBangli SealMotto: Bhukti Mukti BhaktiLocation within BaliCoordinates: 8°17′0″S 115°20′0″E / 8.28333°S 115.33333°E / -8.28333; 115.33333Country IndonesiaProvince BaliCapitalBangliGovernment • Re...

 

American philosopher in Left-Kantian tradition Christine Marion KorsgaardKorsgaard in 2010BornApril 9, 1952 (1952-04-09) (age 72)Chicago, Illinois, United StatesAlma materHarvard UniversityUniversity of IllinoisEra20th-century philosophyRegionWestern philosophySchoolAnalyticInstitutionsHarvard UniversityMain interestsMoral philosophy · Kantianism Christine Marion Korsgaard, FBA (/ˈkɔːrzɡɑːrd/; born April 9, 1952) is an American philosopher who is the Arthur...

Solid or semisolid remains of undigested food This article is about feces in general. For specifically human feces, see Human feces. Fecal matter redirects here. For the American punk rock band, see Fecal Matter (band). Not to be confused with manure, faces, or facies. A comparison of elephant (left) and human feces (right) Feces (or faeces; sg.: faex) are the solid or semi-solid remains of food that was not digested in the small intestine, and has been broken down by bacteria in the large in...

 

Australian physician Frank TidswellMB ChM (Syd) DPH (Camb)BornFrancis Tidswell1867Sydney New South WalesDied26 February 1941 (aged 73–74)Paddington, New South WalesNationalityAustralianOccupation(s)Pathologist, Director of the Government Bureau of MicrobiologyKnown forSnake venom researchBubonic plague researchParent(s)Fred and Mary Ann TidswellThe Hon. Richard Jones MLC(Father-in-law) Francis (Frank) Tidswell (1867 – 26 February 1941)[1] was an Australian physician ...

 

Disambiguazione – Se stai cercando altri significati, vedi Grand Tour (disambigua). Disambiguazione – Se stai cercando i tre maggiori giri ciclistici europei, vedi Grande Giro. Il Colosseo in un dipinto di Bernardo Bellotto (1721-1780) L'Arco di Costantino come si mostrava ai visitatori nella prima metà del XIX secolo in una fotografia del 1850 Il Grand Tour era un lungo viaggio nell'Europa continentale intrapreso dai ricchi dell'aristocrazia europea a partire dal XVIII secolo e destina...

American comedian, singer and actor (1927–2008) Rudy Ray MooreMoore in 2007BornRudolph Frank Moore(1927-03-17)March 17, 1927Fort Smith, Arkansas, U.S.DiedOctober 19, 2008(2008-10-19) (aged 81)Toledo, Ohio, U.S.OccupationsActorcomediansingerfilm producerMusical careerGenresR&BsoulInstrument(s)VocalsYears active1948–2008Websitewww.rudyraymoore.com Musical artist Rudolph Frank Moore (March 17, 1927 – October 19, 2008), known as Rudy Ray Moore, was an American comedian...

 

Cocarde de l'ACI, similaire à celle de la Première Guerre mondiale et de l'actuelle Aeronautica Militare Aeronautica Cobelligerante Italiana (Aviazione Cobelligerante Italiana, ou ACI, ou Aeronautica del Sud), scission de la Regia Aeronautica, a été la force aérienne royaliste du gouvernement Badoglio établi dans le sud de l'Italie pendant les dernières années de la Seconde Guerre mondiale. L'ACI a été formé en Italie du Sud en octobre 1943, après l'Armistice de Cassibile du 8 sep...