Icephobicity

Icephobicity (from ice and Greek φόβος phobos "fear") is the ability of a solid surface to repel ice or prevent ice formation due to a certain topographical structure of the surface.[1][2][3][4][5] The word "icephobic" was used for the first time at least in 1950;[6] however, the progress in micropatterned surfaces resulted in growing interest towards icephobicity since the 2000s.

Icephobicity vs. hydrophobicity

The term "icephobicity" is similar to the term hydrophobicity and other "-phobicities" in physical chemistry (oleophobicity, lipophobicity, omniphobicity, amphiphobicity, etc.). The icephobicity is different from de-icing and anti-icing in that icephobic surfaces, unlike the anti-icing surfaces, do not require special treatment or chemical coatings to prevent ice formation.[7][8][9][10][11]

There is further parallelism between the hydrophobicity and icephobicity. The hydrophobicity is crucial for the "hydrophobic effect" and hydrophobic interactions. For two hydrophobic molecules (e.g., hydrocarbons) placed in water, there is an effective repulsive hydrophobic force, entropic in its origin, due to their interaction with the water medium. The hydrophobic effect is responsible for folding of proteins and other macro-molecules leading to their fractal shape. During ice crystal (snowflake) formation, the synchronization of branch growth occurs due to the interaction with the medium (oversaturated vapor) – is somewhat similar to the hydrophobic effect – the apparent repulsion of the hydrophobic particles due to their interaction with the medium (water). Consequently, despite the shapes of snowflakes being very diverse with "no two flakes similar to each other," most snow crystals are symmetric with each of the six branches almost identical to other five branches. Furthermore, both hydrophobicity and icephobicity can lead to quite complex phenomena, such as self-organized criticality-driven complexity as a result of hydrophobic interactions (during wetting of rough/heterogeneous surfaces or during polypeptide chain folding and looping) or ice crystallization (fractal snowflakes).[7]

Note that thermodynamically both the hydrophobic interactions and ice formation are driven by the minimization of the surface Gibbs energy, ΔG = ΔH − TΔS, where H, T, and S are the enthalpy, temperature, and entropy, respectively. This is because in the hydrophobic interactions large positive value of TΔS prevails over a small positive value of ΔH making spontaneous hydrophobic interaction energetically profitable. The so-called surface roughening transition governs the direction of ice crystal growth and occurs at the critical temperature, above which the entropic contribution into the Gibbs energy, TΔS, prevails over the enthalpic contribution, ΔH, thus making it more energetically profitable for the ice crystal to be rough rather than smooth. This suggests that thermodynamically both the icephobic and hydrophobic behaviors can be viewed as entropic effects.[7]

However, icephobicity is different from the hydrophobicity. Hydrophobicity is a property which is characterized by the water contact angle (CA) and interfacial energies of the solid-water, solid-vapor, and water-vapor interfaces and thus it is a thermodynamic property usually quantitatively defined as CA>90 degrees. Another difference is that the hydrophobicity is opposed to the hydrophilicity in a natural way. There is no such an opposition for the icephobicity, which should therefore be defined by setting a quantitative threshold. The icephobicity is much more similar to how the superhydrophobicity is defined.[7]

Quantitative characterization of icephobicity

In recent publications on the subject there are three approaches to the characterization of surface icephobicity.[7] First, the icephobicity implies low adhesion force between ice and the solid surface. In most cases, the critical shear stress is calculated, although the normal stress can be used as well. While no explicit quantitative definition for the icephobicty has been suggested so far, the researchers characterized icephobic surfaces as those having the shear strength (maximum stress) less in the region between 150 kPa and 500 kPa and even as low as 15.6 kPa,.[1][7]

Second, the icephobicity implies the ability to prevent ice formation on the surface. Such ability is characterized by whether a droplet of supercooled water (below the normal freezing temperature of 0 C) freezes at the interface. The process of freezing can be characterized by time delay of heterogeneous ice nucleation. The mechanisms of droplet freezing are quite complex and can depend on the temperature level, on whether cooling down of the droplet is performed from the side of the solid substrate or from vapor and by other factors.

Third, the icephobic surfaces should repel incoming small droplets (e.g., of rain or fog) at the temperatures below the freezing point.[12]

These three definitions imply that icephobic surfaces should (i) prevent freezing of water condensing on the surface (ii) prevent freezing of incoming water (iii) if ice formed, it should have weak adhesion strength with the solid, so that it can be easily removed. Anti-icing properties may depend on such circumstances as whether the solid surface is colder than the air/vapor, how big is the temperature gradient, and whether a thin film of water tends to form on the solid surface due to capillary effects, disjoining pressure, etc. Mechanical properties of ice and the substrate also of great importance since ice shedding occurs as fracture, either in the Mode I (normal) or Mode II (shear) cracking, so that crack concentrators are major contributors to the reduced strength.[4][7]

References

  1. ^ a b Meuler, A. J. et al. Relationships between Water Wettability and Ice Adhesion. ACS Appl. Mater. Interfaces 2010, 11, 3100–3110
  2. ^ Zheng, L. et al. Exceptional Superhydrophobicity and Low Velocity Impact Icephobicity of Acetone-Functionalized Carbon Nanotube Films. Langmuir, 2011, 27, 9936–9943
  3. ^ Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C. M.; and Poulikakos, D. Are Superhydrophobic Surfaces Best for Icephobicity?. Langmuir, 2011, 27, 3059–3066
  4. ^ a b Nosonovsky, M.; Hejazi, V. I (2012). "Why superhydrophobic surfaces are not always icephobic". ACS Nano. 6 (10): 8488–8913. doi:10.1021/nn302138r. PMID 23009385.
  5. ^ Menini, R.; Ghalmi, Z.; Farzaneh, M. Highly Resistant Icephobic Coatings on Aluminum Alloys. Cold Reg. Sci. Technol. 2011, 65, 65-69
  6. ^ Chemical Industries, 1950, v. 67, p. 559
  7. ^ a b c d e f g Hejazi, V.; Sobolev, K.; Nosonovsky, M. I (2013). "From superhydrophobicity to icephobicity: forces and interaction analysis". Scientific Reports. 3: 2194. doi:10.1038/srep02194. PMC 3709168. PMID 23846773.
  8. ^ Kulinich, S. A.; Farhadi, S.; Nose, K.; and Du, X. W. Superhydrophobic Surfaces: Are They Really Ice-Repellent?. Langmuir, 2011, 27, 25-29
  9. ^ Bahadur, V.; Mishchenko, L.; Hatton, B., Taylor, J. A.; Aizenberg, J.; and Krupenkin, T. Predictive Model for Ice Formation on Superhydrophobic Surfaces. Langmuir, 2011, 27 , 14143–14150
  10. ^ Cao, L. -L.; Jones, A. K.; Sikka, V. K.; Wu, J.; and Gao, D. Anti-Icing Superhydrophobic Coatings. Langmuir, 2009, 25, 12444-12448
  11. ^ Chen, Dayong; Gelenter, Martin D.; Hong, Mei; Cohen, Robert E.; McKinley, Gareth H. (2017). "Icephobic Surfaces Induced by Interfacial Nonfrozen Water". ACS Applied Materials & Interfaces. 9 (4): 4202–4214. doi:10.1021/acsami.6b13773. PMC 6911363. PMID 28054770.
  12. ^ Zheng et al., Langmuir 27:9936 (2011)

Read other articles:

Jules Adler Jules Adler (8 Juli 1865 – 11 Juni 1952) adalah seorang pelukis Perancis, bernama «le peintre des humbles» oleh Louis Vauxcelles, seorang pelukis buruh, pemogokan dan pekerja.[1] Referensi ^ The Realist tradition: French painting and drawing, 1830-1900 Gabriel P. Weisberg, Cleveland Museum of Art - 1980 Jules Adler 1865 Luxeuil— 1952 Paris Jules Adler's career as an artist was governed by chance. His parents were cloth merchants who had five children an...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. I Was a Simple ManSutradaraChristopher Makoto YogiProduserSarah KimDitulis olehChristopher Makoto YogiPemeran Steve Iwamoto Constance Wu Tim Chiou Kanoa Goo Penata musik Pierre Guerineau Alex Zhang Hungtai SinematograferEunsoo ChoDistributorStra...

 

 

GantiwarnoKecamatanPeta lokasi Kecamatan GantiwarnoNegara IndonesiaProvinsiJawa TengahKabupatenKlatenPemerintahan • Camat-Populasi • Total33,004 jiwaKode Kemendagri33.10.02 Kode BPS3310020 Luas25,64 km²Desa/kelurahan16 Gantiwarno (Jawa: ꦒꦤ꧀ꦠꦶꦮꦂꦤ, translit. Gantiwarna) adalah sebuah kecamatan di Kabupaten Klaten, Jawa Tengah. Batas Wilayah Utara Kecamatan Jogonalan Timur laut Kecamatan Wedi Timur Kecamatan Wedi Tenggara Kecamatan Wedi dan ...

The Stolen JoolsGeorge E. Stone dalam film The Stolen JoolsSutradaraWilliam C. McGannProduserPat CaseyDitulis olehEdwin J. Burke (uncredited)Percy Heath (uncredited)PemeranBuster KeatonEdward G. RobinsonJoan CrawfordFay WrayGary CooperDistributorParamount PicturesTanggal rilis 4 April 1931 (1931-04-04) Durasi20 menitNegaraAmerika SerikatBahasaInggris The Stolen Jools adalah sebuah film pendek komedi Pre-Code Amerika 1931 yang diproduksi oleh Masquers Club dari Hollywood, yang menampilkan...

 

 

Anne-Marie Le PourhietFonctionProfesseure des universitésBiographieNaissance 7 août 1954 (69 ans)BrestNationalité françaiseFormation Université de Bretagne-Occidentale (1972-1976)Université Paris-I-Panthéon-Sorbonne (doctorat) (jusqu'en 1985)Activité JuristeAutres informationsA travaillé pour Université Rennes-I (depuis 1998)Université des Antilles et de la Guyane (1994-1998)Université de Caen-Normandie (1990-1994)Université des Antilles et de la Guyane (1988-1990)Universit�...

 

 

Street in Manhattan, New York 40°43′47.6″N 73°59′18.7″W / 40.729889°N 73.988528°W / 40.729889; -73.988528 Looking east from #21 The pocket park in front of St. Mark's Church in-the-Bowery used to be the eastern end of the street Stuyvesant Street is one of the oldest streets in the New York City borough of Manhattan. It runs diagonally from 9th Street at Third Avenue to 10th Street near Second Avenue, all within the East Village, Manhattan, neighborhood. Th...

14th-generation smartphone produced by Apple Inc. iPhone 12 ProiPhone 12 Pro MaxiPhone 12 Pro in GoldCodenameD53P /BrandApple Inc.ManufacturerFoxconn (on contract)SloganIt's a leap year.Generation14thModel Pro models: A2341 (United States) A2406 (Canada / Japan) A2407 (International) A2408 (China / Hong Kong / Macau) Pro Max models: A2342 (United States) A2410 (Canada / Japan) A2411 (International) A2412 (China / Hong Kong / Macau) Compatible networksGSM, CDMA, 3G, EVDO, HSPA+, 4G LTE, 5GFirs...

 

 

Statistical method for resampling Schematic of Jackknife Resampling In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size n {\displaystyle n} , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size ( n − 1 ) ...

 

 

Disambiguazione – Se stai cercando altri edifici sportivi aventi lo stesso nome, vedi Madison Square Garden (disambigua). Madison Square GardenMSG The Garden Vista dell'edificio Informazioni generaliStato Stati Uniti Ubicazione4 Pennsylvania Plaza, Manhattan, New York 10001, N.Y. Inaugurazione11 febbraio 1968 Costo123000000 $ Ristrutturazione1989, 1991, 2011-13 Costi di ricostr.200000000 $ ProprietarioThe Madison Square Garden Company ProgettoCharles LuckmanEllerbe BecketCha...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

ХуторКоноваловский 49°38′16″ с. ш. 41°07′16″ в. д.HGЯO Страна  Россия Субъект Федерации Ростовская область Муниципальный район Верхнедонской Сельское поселение Мещеряковское История и география Часовой пояс UTC+3:00 Население Население ↘230[1] человек (2010) Наз...

 

 

American actress and model (born 1998) Hunter SchaferSchafer at the 2024 BerlinaleBorn (1998-12-31) December 31, 1998 (age 25)Trenton, New Jersey, U.S.Occupations Actress model Years active2017–presentModeling informationHair colorBlondeEye colorBlueAgency Community (New York) Why Not Model Management (Milan) Premier Model Management (London)[1] Hunter Schafer (born December 31, 1998) is an American actress and model. She is mainly known for her role as transgender high sc...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

 

 

خالد باطرفي باطرفي يظهر في مقطع لتنظيم القاعدة في جزيرة العرب معلومات شخصية الاسم الكامل خالد عمر سعيد عمر باطرفي الكندي[1] الميلاد سنة 1978   الرياض[2]  الوفاة 10 مارس 2024 (45–46 سنة)[3]  اليمن  مواطنة السعودية  اللقب أبو المقداد الكندي[4] مناصب أمير ت...

 

 

Shorinji Kempo (少林寺拳法)FokusCampuranKekerasanKontak penuhNegara asal JepangPenciptaDoshin SoPraktisi terkenalSonny ChibaOrang tuaKung Fu ShaolinOlahraga olimpikTidak Shorinji Kempo (少林寺拳法) adalah salah satu dari seni bela diri yang berasal dari Jepang. Di Indonesia biasa disebut dengan Kempo saja. Shorinji Kempo diciptakan oleh Doshin So[1] (宗 道臣) pada tahun 1947 sebagai sistem pelatihan dan pengembangan diri (行: gyo atau disiplin dalam bahasa jepang).[2...

Happy Go JennyGenre Drama Komedi romantis PembuatMonty TiwaSkenario Gita Alvernita Eric Tiwa Maudy Puteri Agusdina CeritaMonty TiwaSutradaraLakondePengarah kreatifRaakhee PunjabiPemeran Prilly Latuconsina Jourdy Pranata Gabriella Desta Abun Sungkar Josephine Firmstone Penggubah lagu temaNadya FatiraLagu pembukaCome Walk With Me oleh Nadya FatiraLagu penutupCome Walk With Me oleh Nadya FatiraMusikAndi RiantoNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode8ProduksiProdu...

 

 

Pour les articles homonymes, voir Sextus Pompeius. Sextus Pompée Aureus de Sextus Pompée émis en Sicile vers 36 av. J.-C. Titre Préfet de la flotte romaine en 44 av. J.-C. Autres titres Gouverneur de Corse-Sardaigne, de Sicile et d'Achaïe en 39 av. J.-C. Arme Marine romaine Grade militaire Général Commandement Armée romaine Conflits Guerre civile de CésarRévolte sicilienne Faits d'armes Bataille de Munda en 45 av. J.-C.Prise de la Sicile en 45 av. J.-C.Bataille de Rhêgion en 42 av...

 

 

Questa voce sull'argomento calciatori kirghisi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Bekzhan SagynbaevNazionalità Kirghizistan Calcio RuoloAttaccante Squadra Dordoi Biškek CarrieraSquadre di club1 2012-2013 Ala-Too Naryn? (?)2014 Dordoi Biškek? (?)2015 Ala-Too Naryn? (?)2016-2022 Dordoi Biškek56+ (11+)2022-2023 Kitchee5 (1)2023- Dordoi Biškek10 (0)...

Timbro Bildad1978TypTankesmedjaSäteKungsgatan 60, StockholmPlatsSverigeVDP.M. Nilsson[1][2]Personal20[3]Webbplatswww.timbro.se Den här artikeln behöver källhänvisningar för att kunna verifieras. Motivering: Majoriteten av källorna till den här artikeln är från Timbro. (2021-09) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Timbro är en m...

 

 

Light source using an electric arc through mercury vapor A 175-watt mercury-vapor light approximately 15 seconds after starting. A closeup of a 175-W mercury vapor lamp. The small diagonal cylinder at the bottom of the arc tube is a resistor which supplies current to the starter electrode. A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light.[1] The arc discharge is generally confined to a small fused quartz arc tube mounted...