Huge cardinal

In mathematics, a cardinal number is called huge if there exists an elementary embedding from into a transitive inner model with critical point and

Here, is the class of all sequences of length whose elements are in .

Huge cardinals were introduced by Kenneth Kunen (1978).

Variants

In what follows, refers to the -th iterate of the elementary embedding , that is, composed with itself times, for a finite ordinal . Also, is the class of all sequences of length less than whose elements are in . Notice that for the "super" versions, should be less than , not .

κ is almost n-huge if and only if there is with critical point and

κ is super almost n-huge if and only if for every ordinal γ there is with critical point , , and

κ is n-huge if and only if there is with critical point and

κ is super n-huge if and only if for every ordinal there is with critical point , , and

Notice that 0-huge is the same as measurable cardinal; and 1-huge is the same as huge. A cardinal satisfying one of the rank into rank axioms is -huge for all finite .

The existence of an almost huge cardinal implies that Vopěnka's principle is consistent; more precisely any almost huge cardinal is also a Vopěnka cardinal.

Kanamori, Reinhardt, and Solovay defined seven large cardinal properties between extendibility and hugeness in strength, named through , and a property .[1] The additional property is equivalent to " is huge", and is equivalent to " is -supercompact for all ". Corazza introduced the property , lying strictly between and .[2]

Consistency strength

The cardinals are arranged in order of increasing consistency strength as follows:

  • almost -huge
  • super almost -huge
  • -huge
  • super -huge
  • almost -huge

The consistency of a huge cardinal implies the consistency of a supercompact cardinal, nevertheless, the least huge cardinal is smaller than the least supercompact cardinal (assuming both exist).

ω-huge cardinals

One can try defining an -huge cardinal as one such that an elementary embedding from into a transitive inner model with critical point and , where is the supremum of for positive integers . However Kunen's inconsistency theorem shows that such cardinals are inconsistent in ZFC, though it is still open whether they are consistent in ZF. Instead an -huge cardinal is defined as the critical point of an elementary embedding from some rank to itself. This is closely related to the rank-into-rank axiom I1.

See also

References

  1. ^ A. Kanamori, W. N. Reinhardt, R. Solovay, "Strong Axioms of Infinity and Elementary Embeddings", pp.110--111. Annals of Mathematical Logic vol. 13 (1978).
  2. ^ P. Corazza, "A new large cardinal and Laver sequences for extendibles", Fundamenta Mathematicae vol. 152 (1997).
  • Kanamori, Akihiro (2003), The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3.
  • Kunen, Kenneth (1978), "Saturated ideals", The Journal of Symbolic Logic, 43 (1): 65–76, doi:10.2307/2271949, ISSN 0022-4812, JSTOR 2271949, MR 0495118, S2CID 13379542.
  • Maddy, Penelope (1988), "Believing the Axioms. II", The Journal of Symbolic Logic, 53 (3): 736-764 (esp. 754-756), doi:10.2307/2274569, JSTOR 2274569, S2CID 16544090. A copy of parts I and II of this article with corrections is available at the author's web page.

Read other articles:

Pop MieJenis produkMi instanPemilikIndofood CBPNegara IndonesiaDiluncurkan1987Situs webwww.popmie.com Pop Mie adalah merek mi instan dalam bentuk cup di Indonesia, diproduksi oleh Indofood CBP, anak perusahaan Indofood. Pop Mie diluncurkan pertama kali pada tahun 1987.[1] Meskipun awalnya dikonsepkan sebagai sub-brand dari Indomie,[2] Pop Mie kini sudah menjadi merek terpisah yang memiliki varian berbeda dari Indomie. Jenis-jenis Pop Mie Pop Mie tersedia dalam berbagai pi...

太陽の墓場監督 大島渚脚本 大島渚、石堂淑朗製作 池田富雄出演者 炎加世子、佐々木功音楽 眞鍋理一郎撮影 川又昻編集 浦岡敬一製作会社 松竹配給 松竹公開 1960年8月9日[1] 1986年11月26日[2]上映時間 87分製作国 日本言語 日本語テンプレートを表示 『太陽の墓場』(たいようのはかば)は、大島渚が監督し、1960年に公開された日本の映画[3]。松竹が制作...

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Setembro de 2020) Seleção Albanesa de Futebol de Areia Alcunhas?  Kuq e ZinjtëShqiponjat Associação Associação de Futebol da Albânia Confederação UEFA (Europa) Treinador Ergys Kadiu Capitão Arjan Bllumbi Jogos 1.ª partida internacional Albânia...

Tamara GverdtsiteliARSLahirTamara Mikhailovna Gverdtsiteli18 Januari 1962 (umur 61)Tbilisi, Georgian SSR, Soviet UnionPekerjaan Singer-songwriter actress Tahun aktif1972–sekarangGelarPeople's Artist of Russia (2004)Penghargaan Tamara Mikhailovna Gverdtsiteli (bahasa Georgia: თამარ გვერდწითელი, bahasa Rusia: Тамара Михайловна Гвердцители, lahir 18 Januari 1962) adalah seorang penyanyi, aktris, serta komposer asal Ge...

Dieser Artikel befasst sich mit der Schlacht des Ersten Weltkrieges von 1916. Zu anderen Bedeutungen siehe Belagerung von Verdun. Schlacht um Verdun Teil von: Erster Weltkrieg Karte der SchlachtSituation am 21. Februar 1916 Datum 21. Februar bis 19. Dezember 1916 Ort Fester Platz Verdun,Frankreich Ausgang Französischer taktischer Sieg[1][2] Konfliktparteien Dritte Französische Republik Frankreich Deutsches Reich Deutsches Reich Befehlshaber Joseph Joffre,Henri Phil...

Track cycling race This article is about the bicycle race. For the sprint car race called The Little 500, see Anderson Speedway. Little 500Race detailsDateThird weekend of AprilNickname(s)Little FiveDisciplineTrack cyclingOrganiserIndiana University Student FoundationRace directorEmily CarricoWeb sitewww.iusf.indiana.edu/little500/index.html History (men)First edition1951Editions72First winnerSouth Hall Buccaneers (Collins)Most winsCutters (15)Most recent2023: Cu...

Badminton playerElla DiehlЭлла ДильPersonal informationBirth nameElla Aleksandrovna KarachkovaCountryRussiaBorn (1978-08-05) 5 August 1978 (age 45)Kuybyshev, Russian SFSR, USSRHeight1.75 m (5 ft 9 in)Weight67 kg (148 lb)HandednessRightWomen's singlesHighest ranking9 (2 December 2010) Medal record Women's badminton Representing  Russia European Championships 2010 Manchester Women's singles European Mixed Team Championships 2011 Amsterdam Mix...

У Вікіпедії є статті про інші значення цього терміна: Нафтовик. «Нафтовик» (Долина) Повна назва Футбольний клуб «Нафтовик» Долина Прізвисько Бойки Коротка назва ФК «Нафтовик» Засновано 1955 Населений пункт Долина,  Україна Стадіон Нафтовик Вміщує 2 664 Президент Роман Гр�...

Favoritism granted to relatives or close friends Benjamin Harrison, treasurer of Guy's Hospital in London, was shown as a dominant presiding figure, with the nepotism of Sir Astley Cooper having his tacit approval. Political corruption Concepts Anti-corruption Bribery Cronyism Economics of corruption Electoral fraud Elite capture Influence peddling Kleptocracy Mafia state Nepotism Slush fund Simony Corruption by country Africa Angola Botswana Cameroon Chad Comoros Congo Egypt Equatorial Guine...

Liga de Campeones 2017-18 LXIII Edición Datos generalesSede Estadio Olímpico, Kiev (final)Fecha 1 de enero de 201818 de diciembre de 2018Edición 63Organizador UEFAPalmarésCampeón Real Madrid (14)Subcampeón LiverpoolSemifinalistas F. C. Bayern A. S. RomaDatos estadísticosAsistentes 5821673Participantes 32 (54 asociaciones)79 (con fases previas)Partidos 112Goles 353Goleador Cristiano Ronaldo (15) Cronología 2016-17 LXIII Edición 2018-19 Sitio oficial [editar datos en Wikidata]...

Annual list of wealthiest Americans Several terms redirect here. For other uses, see List of wealthiest Americans by net worth. Forbes 400400 Richest AmericansList of 400 US citizens, ranked in order of net worthPublication detailsPublisherWhale Media InvestmentsForbes familyPublicationForbesFirst published1982 by Malcolm ForbesLatest publicationOctober 2023Published list details (September 2022)[1]WealthiestElon MuskNet worth (1st) US$251 billionEntry point US$2.9 ...

除特别注明外,本文所有时间均以中时区时间(UTC±0)为准。 弗拉基米尔·杰茹罗夫出生 (1962-07-30) 1962年7月30日(61歲)苏联俄罗斯苏维埃联邦社会主义共和国莫尔多瓦苏维埃社会主义自治共和国祖博瓦波利亚纳区亚瓦斯(俄语:Явас)国籍 俄羅斯职业飞行员奖项 航天生涯宇航员军衔上校在太空时间244日5时28分甄选1987年舱外活动总数9舱外活动时间37时2分任务联盟TM-21�...

1998 video gameBaroqueNorth American PS2 cover art featuring the character ArchangelDeveloper(s)Sting EntertainmentPublisher(s)Sega Saturn, PlayStationJP: Entertainment Software PublishingPlayStation 2, WiiJP: Sting EntertainmentNA: Atlus USAEU: Rising Star GamesNintendo SwitchJP: Sting EntertainmentDirector(s)Kazunari YonemitsuNoriaki KanekoDaizo Harada (Remake)Producer(s)Takeshi SantoDesigner(s)Kazunari YonemitsuHaruhiko MatsuzakiProgrammer(s)Shinichi AbeSatoshi MiyauchiRyuji KudoArtist(s)H...

Nintendo 64 storage medium Nintendo 64 Game PakOpen and unopened N64 Game PakMedia typeROM cartridgeEncodingDigitalCapacity32–512 MbitRead mechanism5–50 MB/s[1]: 48 StandardProprietaryDeveloped byNintendoUsageNintendo 64 Nintendo 64 Game Pak (part number NUS-006) is the brand name of the ROM cartridges that store game data for the Nintendo 64. As with Nintendo's previous consoles, the Game Pak's design strategy was intended to achieve maximal read sp...

1986 novel by Tony Hillerman This article is about the novel. For other uses, see Skin-walker. Skinwalkers First editionAuthorTony HillermanCover artistPeter ThorpeCountryUnited StatesLanguageEnglishSeriesJim Chee / Joe Leaphorn Navajo Tribal Police SeriesGenreMysteryPublished1986 Harper & RowMedia typePrint and audioPages216Awards1988 Anthony Award for Best Novel 1987 Spur Award for Best Western NovelISBN0-06-015695-3OCLC606031842Preceded byThe Ghostway (1984) Followe...

Nigerian politician This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (April 2022) Seyi AdisaBorn7 November 1983NationalityNigerianOther namesJosephAlma materUniversity of BirminghamOccupationLawyerPolitical partyAll Progressives Congress (APC) ListenⓘSeyi Joseph Adisa (born 7 November 1983) is a Nigerian public administrator and speaker, a lawyer, entrepreneur, and politic...

The third variation of the current Disney Channel logo since 2019. This article lists past, present and future television programming on American basic cable channel and former premium channel, Disney Channel, since its launch on April 18, 1983. Current programming Original Live-action Title Premiere date Current season Source(s) Bunk'd July 31, 2015 7 Raven's Home July 21, 2017 6 Secrets of Sulphur Springs January 15, 2021 3 The Villains of Valley View June 3, 2022 2 [1][2]&#...

Лесной орех: слева на ветке прикрыт плюской Спелый фундук Лещина древовидная, Турция Подметальщик собирает фундук в саду. Типичное печенье с фундуком, приготовленное в Фондачелли-Фантина, Сицилия Не поспевший фундук Лесно́й оре́х — орех любого из 20 видов кустарника (�...

Skyscraper in Detroit This article is about the Detroit skyscraper Cadillac Tower. For the attached skyscraper complex approved for construction, see Cadillac Centre. For the New Center Detroit skyscraper, see Cadillac Place. Cadillac TowerFormer namesBarlum TowerGeneral informationTypeCommercial officesCoordinates42°19′55″N 83°02′42″W / 42.331976°N 83.044893°W / 42.331976; -83.044893OwnerBedrock DetroitHeightAntenna spire176.2 m (578 ft)Roof133.4...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article concernant l'histoire militaire doit être recyclé (février 2010). Une réorganisation et une clarification du contenu paraissent nécessaires. Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en utilisant {{section à recycler}}. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (oc...