House monotonicity

House monotonicity[1]: 134–141  (also called house-size monotonicity[2]) is a property of apportionment methods. These are methods for allocating seats in a parliament among federal states (or among political parties). The property says that, if the number of seats in the "house" (the parliament) increases, and the method is re-activated, then no state (or party) should have fewer seats than it previously had. A method that fails to satisfy house-monotonicity is said to have the Alabama paradox.

In the context of committee elections, house monotonicity is often called committee monotonicity. It says that, if the size of the committee increases, then all the candidate that were previously elected, are still elected.

House monotonicity is the special case of resource monotonicity for the setting in which the resource consists of identical discrete items (the seats).

Methods violating house-monotonicity

An example of a method violating house-monotonicity is the largest remainder method (= Hamilton's method). Consider the following instance with three states:

10 seats house 11 seats house
State Population Fair share Seats Fair share Seats
A 6 4.286 4 4.714 5
B 6 4.286 4 4.714 5
C 2 1.429 2 1.571 1

When one seat is added to the house, the share of state C decreases from 2 to 1.

This occurs because increasing the number of seats increases the fair share faster for the large states than for the small states. In particular, large A and B had their fair share increase faster than small C. Therefore, the fractional parts for A and B increased faster than those for C. In fact, they overtook C's fraction, causing C to lose its seat, since the method examines which states have the largest remaining fraction.

This violation is known as the Alabama paradox due to the history of its discovery. After the 1880 census, C. W. Seaton, chief clerk of the United States Census Bureau, computed apportionments for all House sizes between 275 and 350, and discovered that Alabama would get eight seats with a House size of 299 but only seven with a House size of 300.[3]: 228–231 

Methods satisfying house-monotonicity

Methods for apportionment

All the highest-averages methods (= divisor methods) satisfy house monotonicity.[1]: Cor.4.3.1  This is easy to see when considering the implementation of divisor methods as picking sequences: when a seat are added, the only change is that the picking sequence is extended with one additional pick. Therefore, all states keep their previously picked seats. Similarly, rank-index methods, which are generalizations of divisor methods, satisfy house-monotonicity.

Moreover, capped divisor methods, which are variants of divisor methods in which a state never gets more seats than its upper quota, also satisfy house-monotonicity. An example is the Balinsky-Young quota method.[4]

Every house-monotone method can be defined as a recursive function of the house size h.[1]: Thm.7.2  Formally, an apportionment method is house-monotone and satisfies both quotas if-and-only-if it is constructed recursively as follows (see mathematics of apportionment for the definitions and notation):

  • ;
  • If , then is found by giving seats to some single state , where:
    • is the set of states that can get an additional seat without violating their upper quota for the new house size;
    • is the set of states that might receive less than their lower quota for some future house size.

Every coherent apportionment method is house-monotone.[2]: Sub.9.5 

Methods for multiwinner voting

The sequential Phragmen's voting rules, both for approval ballots and for ranked ballots, are committee-monotone. The same is true for Thiele's addition method and Thiele's elimination method. However, Thiele's optimization method is not committee-monotone.[5]: Sec.5 

See also

References

  1. ^ a b c Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.
  2. ^ a b Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Securing System Consistency: Coherence and Paradoxes", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 159–183, doi:10.1007/978-3-319-64707-4_9, ISBN 978-3-319-64707-4, retrieved 2021-09-02
  3. ^ Stein, James D. (2008). How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics. New York: Smithsonian Books. ISBN 9780061241765.
  4. ^ Balinski, M. L.; Young, H. P. (1975-08-01). "The Quota Method of Apportionment". The American Mathematical Monthly. 82 (7): 701–730. doi:10.1080/00029890.1975.11993911. ISSN 0002-9890.
  5. ^ Janson, Svante (2018-10-12). "Phragmen's and Thiele's election methods". arXiv:1611.08826 [math.HO].

Read other articles:

Questa voce sull'argomento scrittori britannici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Charles Cavendish Fulke Greville Charles Cavendish Fulke Greville (Londra, 2 aprile 1794 – Londra, 17 gennaio 1865) è stato uno scrittore e politico britannico. Indice 1 Biografia 2 Ascendenza 3 Altri progetti 4 Collegamenti esterni Biografia Acuto osservatore politico, nel 1845 pubblicò il volume Politic...

«Poison» Sencillo de The Prodigydel álbum Music for the Jilted GenerationPublicación 6 de marzo de 1995[1]​Género(s) Hip-hop, technoDuración 6:42 (versión de álbum)4:05 (95 EQ)Discográfica XL, MuteAutor(es) Liam Howlett, Keith PalmerProductor(es) Liam HowlettSencillos de The Prodigy «Voodoo People» (1994) «Poison» (1995) «Firestarter» (1996) Videoclip «Poison» en YouTube. [editar datos en Wikidata] «Poison» es una canción del grupo británico de música ele...

Hubungan akrab Jenis hubungan Duda · Istri · Janda · Keluarga · Kumpul kebo · Monogami · Nikah siri · Pacar lelaki · Pacar perempuan · Perkawinan · Poligami · Saudara · Sahabat · Selir · Suami · Wanita simpanan Peristiwa dalam hubungan Cinta · Ciuman · Kasih sayang · Pacaran · Persahabatan · Pernikahan · Perselingkuhan · Perceraian · Percumbuan · Perj...

O Som da Terra a Tremer The Sound of the Shaking Earth  Portugal1990 •  cor •  92 min  Género drama Direção Rita Azevedo Gomes Produção José Mazeda Elenco José Mário BrancoManuela de FreitasMiguel Gonçalves Música Wolfgang Amadeus MozartCarlos GardelAntonio VivaldiJohann Sebastian Bach Cinematografia Acácio de Almeida Figurino Maria Tomás Edição Rita Azevedo GomesManuela ViegasVasco Pimentel Lançamento 22 de novembro de 1990 Idioma português, francês O...

  Astrophytum asterias Astrophytum asterias.Estado de conservaciónVulnerable (UICN 3.1)[1]​TaxonomíaReino: PlantaeSubreino: TracheobiontaDivisión: MagnoliophytaClase: MagnoliopsidaSubclase: CaryophyllidaeOrden: CaryophyllalesFamilia: CactaceaeSubfamilia: CactoideaeTribu: CacteaeGénero: AstrophytumLem.Especie: A. asterias(Zucc.) - Lem., 1845[editar datos en Wikidata] Astrophytum asterias es un cactus sin espinas que puebla las regiones del sur de Estados Unidos y ...

Charel Janssens kan verwijzen naar: Charles Janssens (revueartiest), een Belgisch acteur en revue-artiest (1906-1986) Charel Janssens (acteur Lili en Marleen), een Belgisch acteur die vooral bekend is uit de serie Lili en Marleen Bekijk alle artikelen waarvan de titel begint met Charel Janssens of met Charel Janssens in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Charel Janssens inzichtelijk te maken. Op deze pagina st...

Rumah Sakit Jiwa St. Elizabeths di Washington, D.C., merupakan salah satu tempat diadakannya percobaan Rosenhan. Percobaan Rosenhan adalah sebuah percobaan yang dilakukan oleh psikolog David Rosenhan pada 1973.[1] Percobaan ini dilakukan untuk mengetahui apakah psikiater dapat membedakan antara pasien yang benar-benar menderita gangguan jiwa dengan yang tidak.[2] Kepercayaan yang dianut sebelumnya adalah bahwa pasien akan memperlihatkan gejala-gejala dan gejala tersebut dapat ...

Dialectos y acentos del español en España. El castellano churro es la denominación popular de un conjunto de variedades dialectales del castellano en las comarcas churras valencianas influenciado históricamente por el idioma valenciano y por el aragonés (en aquellas comarcas repobladas mayoritariamente por aragoneses). Además, algunas de las características de estos dialectos se pueden encontrar a veces también en el castellano hablado en la zona históricamente valencianohablante, so...

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...

Martti Ahtisaari (2012) Martti Oiva Kalevi Ahtisaari [ˈmɑrtːi ˈɑhtisɑːri]  (* 23. Juni 1937 in Viipuri, Finnland, heute Wyborg, Russland; † 16. Oktober 2023 in Helsinki) war ein finnischer sozialdemokratischer Politiker und Diplomat. Er amtierte von 1994 bis 2000 als 10. Präsident der Republik Finnland und wurde 2008 für seine langjährigen Bemühungen zur Lösung internationaler Konflikte mit dem Friedensnobelpreis ausgezeichnet. Inhaltsverzeichnis 1 Leben 2 Ausz...

IldjarnInformasi latar belakangAsalTelemark, NorwegiaGenreBlack metal, dark ambientTahun aktif1991–2005LabelNorse League ProductionsNorthern HeritageArtis terkaitThou Shalt Suffer, Emperor, Sort Vokter Ildjarn adalah sebuah proyek musik black metal dari Norwegia, yang dibentuk pada 1991. Ildjarn merekam musik hingga 1997, tapi tidak berakhir hingga 2005. Ildjarn dirupakan oleh Vidar Vaaer, tetapi beberapa karya direkam bersama seorang musisi lain yang dikenal dengan nama Nidhogg. Musik Ildj...

2016 film Little WingFilm posterFinnishTyttö nimeltä Varpu Directed bySelma VilhunenWritten bySelma VilhunenProduced by Kai Nordberg Kaale Aho Starring Linnea Skog Paula Vesala CinematographyTuomo HutriEdited bySamu HeikkiläMusic by Jori Sjöroos Paula Vesala Productioncompanies Making Movies Final Cut for Real Release dates 8 September 2016 (2016-09-08) (TIFF) 23 September 2016 (2016-09-23) (Finland) Running time100 minutesCountries Finland Denmark La...

Channel near Hong Kong island Sulphur Channel Sulphur ChannelTraditional Chinese硫磺海峽TranscriptionsStandard MandarinHanyu PinyinLiúhuáng HǎixiáYue: CantoneseJyutpingLau4 Wong4 Hoi2 Haap8 Green Island and Little Green Island viewed across Sulphur Channel. The Sai Wan Swimming Shed is visible in the foreground. The Sulphur Channel is a narrow inshore passage between Green Island and the northwest tip (West Point) of Hong Kong Island in Hong Kong. The Sulphur Channel is mainly us...

Protein-coding gene in the species Homo sapiens XBP1IdentifiersAliasesXBP1, TREB5, XBP-1, XBP2, TREB-5, X-box binding protein 1External IDsOMIM: 194355 MGI: 98970 HomoloGene: 3722 GeneCards: XBP1 Gene location (Human)Chr.Chromosome 22 (human)[1]Band22q12.1|22q12Start28,794,555 bp[1]End28,800,597 bp[1]Gene location (Mouse)Chr.Chromosome 11 (mouse)[2]Band11 A1|11 3.61 cMStart5,470,659 bp[2]End5,475,893 bp[2]RNA expression patternBgeeHuma...

Це список із позасонячних планет, які були виявлені за періодичними пульсаціями. Відомо 8 відкритих за пульсаціями пульсара та 12 за пульсаціями змінної зорі. Список відсортований за орбітальними періодами. Метод працює, виявляючи зміни в радіовипромінюванні пульсарів, �...

2015 studio album by Gin WigmoreBlood to BoneStudio album by Gin WigmoreReleased26 June 2015RecordedAugust 2014, Los AngelesGenreAlternative rock, folk rockLength37:59LabelUniversal, MercuryProducerGin Wigmore, Stuart CrichtonGin Wigmore chronology Gravel & Wine(2011) Blood to Bone(2015) Ivory(2018) Singles from Blood to Bone New RushReleased: April 20, 2015 Written in the WaterReleased: May 28, 2015 Blood to Bone is the third album from New Zealand alternative rock singer Gin Wig...

В Википедии есть статьи о других людях с фамилией Пас. Октавио Пасисп. Octavio Paz Октавио Пас на Международном фестивале поэзии в Мальмё, 1988 Дата рождения 31 марта 1914(1914-03-31) Место рождения Мехико, Мексика Дата смерти 19 апреля 1998(1998-04-19) (84 года) Место смерти Мехико, Мексика Граж...

Proyek Lark adalah sebuah roket rudal permukaan-ke-udara berbahan bakar cair prioritas tinggi, berbahan bakar padat mendorong, yang dikembangkan oleh Angkatan Laut Amerika Serikat untuk memenuhi ancaman kamikaze. Setelah konfigurasi Lark didirikan oleh Biro of Aeronautics pada bulan Januari 1945 Fairchild Aircraft diberi kontrak untuk memproduksi 100 rudal Maret 1945. Fairchild menggunakan bimbingan perintah radio dengan radar homing semi-active AN/DPN-7. Sebuah kontrak cadangan 100 rudal dib...

The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: OpenUK – news · newspapers · books · scholar · JST...

2023 film festival 26th Málaga Film FestivalOfficial poster by Adán Miranda[1]Opening filmSomeone Who Takes Care of MeClosing filmHow to Become a Modern ManLocationMálaga, SpainAwardsGolden Biznaga (20,000 Species of Bees and Sister & Sister)Festival date10–19 March 2023Málaga Film Festival2024 2022 The 26th Málaga Film Festival took place from 10 to 19 March 2023 in Málaga, Andalusia, Spain. 20,000 Species of Bees and Sister & Sister won the Golden Biznaga for, respec...