Hofstadter's butterfly

Rendering of the butterfly by Hofstadter

In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter[1] and is one of the early examples of modern scientific data visualization. The name reflects the fact that, as Hofstadter wrote, "the large gaps [in the graph] form a very striking pattern somewhat resembling a butterfly."[1]

The Hofstadter butterfly plays an important role in the theory of the integer quantum Hall effect and the theory of topological quantum numbers.

History

The first mathematical description of electrons on a 2D lattice, acted on by a perpendicular homogeneous magnetic field, was studied by Rudolf Peierls and his student R. G. Harper in the 1950s.[2][3]

Hofstadter first described the structure in 1976 in an article on the energy levels of Bloch electrons in perpendicular magnetic fields.[1] It gives a graphical representation of the spectrum of Harper's equation at different frequencies. One key aspect of the mathematical structure of this spectrum – the splitting of energy bands for a specific value of the magnetic field, along a single dimension (energy) – had been previously mentioned in passing by Soviet physicist Mark Azbel in 1964[4] (in a paper cited by Hofstadter), but Hofstadter greatly expanded upon that work by plotting all values of the magnetic field against all energy values, creating the two-dimensional plot that first revealed the spectrum's uniquely recursive geometric properties.[1]

Written while Hofstadter was at the University of Oregon, his paper was influential in directing further research. It predicted on theoretical grounds that the allowed energy level values of an electron in a two-dimensional square lattice, as a function of a magnetic field applied perpendicularly to the system, formed what is now known as a fractal set. That is, the distribution of energy levels for small-scale changes in the applied magnetic field recursively repeats patterns seen in the large-scale structure.[1] "Gplot", as Hofstadter called the figure, was described as a recursive structure in his 1976 article in Physical Review B,[1] written before Benoit Mandelbrot's newly coined word "fractal" was introduced in an English text. Hofstadter also discusses the figure in his 1979 book Gödel, Escher, Bach. The structure became generally known as "Hofstadter's butterfly".

David J. Thouless and his team discovered that the butterfly's wings are characterized by Chern integers, which provide a way to calculate the Hall conductance in Hofstadter's model.[5]

Confirmation

A simulation of electrons via superconducting qubits yields Hofstadter's butterfly

In 1997 the Hofstadter butterfly was reproduced in experiments with a microwave guide equipped with an array of scatterers.[6] The similarity between the mathematical description of the microwave guide with scatterers and Bloch's waves in the magnetic field allowed the reproduction of the Hofstadter butterfly for periodic sequences of the scatterers.

In 2001, Christian Albrecht, Klaus von Klitzing, and coworkers realized an experimental setup to test Thouless et al.'s predictions about Hofstadter's butterfly with a two-dimensional electron gas in a superlattice potential.[7][2]

In 2013, three separate groups of researchers independently reported evidence of the Hofstadter butterfly spectrum in graphene devices fabricated on hexagonal boron nitride substrates.[8][9][10] In this instance the butterfly spectrum results from the interplay between the applied magnetic field and the large-scale moiré pattern that develops when the graphene lattice is oriented with near zero-angle mismatch to the boron nitride.

In September 2017, John Martinis's group at Google, in collaboration with the Angelakis group at CQT Singapore, published results from a simulation of 2D electrons in a perpendicular magnetic field using interacting photons in 9 superconducting qubits. The simulation recovered Hofstadter's butterfly, as expected.[11]

In 2021 the butterfly was observed in twisted bilayer graphene at the second magic angle.[12]

Theoretical model

Hofstadter butterfly is the graphical solution to Harper's equation, where the energy ratio is plotted as a function of the flux ratio.

In his original paper, Hofstadter considers the following derivation:[1] a charged quantum particle in a two-dimensional square lattice, with a lattice spacing , is described by a periodic Schrödinger equation, under a perpendicular static homogeneous magnetic field restricted to a single Bloch band. For a 2D square lattice, the tight binding energy dispersion relation is

,

where is the energy function, is the crystal momentum, and is an empirical parameter. The magnetic field , where the magnetic vector potential, can be taken into account by using Peierls substitution, replacing the crystal momentum with the canonical momentum , where is the particle momentum operator and is the charge of the particle ( for the electron, is the elementary charge). For convenience we choose the gauge .

Using that is the translation operator, so that , where and is the particle's two-dimensional wave function. One can use as an effective Hamiltonian to obtain the following time-independent Schrödinger equation:

Considering that the particle can only hop between points in the lattice, we write , where are integers. Hofstadter makes the following ansatz: , where depends on the energy, in order to obtain Harper's equation (also known as almost Mathieu operator for ):

where and , is proportional to the magnetic flux through a lattice cell and is the magnetic flux quantum. The flux ratio can also be expressed in terms of the magnetic length , such that .[1]

Hofstadter's butterfly is the resulting plot of as a function of the flux ratio , where is the set of all possible that are a solution to Harper's equation.

Solutions to Harper's equation and Wannier treatment

Hofstadter's butterfly phase diagram at zero temperature. The horizontal axis indicates electron density, starting with no electrons from the left. The vertical axis indicates the strength of the magnetic flux, starting from zero at the bottom, the pattern repeats periodically for higher fields. The colors represent the Chern numbers of the gaps in the spectrum, also known as the TKNN (Thouless, Kohmoto, Nightingale and Nijs) integers. Blueish cold colors indicate negative Chern numbers, warm red colors indicate positive Chern numbers, white indicates zero.[2]

Due to the cosine function's properties, the pattern is periodic on with period 1 (it repeats for each quantum flux per unit cell). The graph in the region of between 0 and 1 has reflection symmetry in the lines and .[1] Note that is necessarily bounded between -4 and 4.[1]

Harper's equation has the particular property that the solutions depend on the rationality of . By imposing periodicity over , one can show that if (a rational number), where and are distinct prime numbers, there are exactly energy bands.[1] For large , the energy bands converge to thin energy bands corresponding to the Landau levels.

Gregory Wannier showed that by taking into account the density of states, one can obtain a Diophantine equation that describes the system,[13] as

where

where and are integers, and is the density of states at a given . Here counts the number of states up to the Fermi energy, and corresponds to the levels of the completely filled band (from to ). This equation characterizes all the solutions of Harper's equation. Most importantly, one can derive that when is an irrational number, there are infinitely many solution for .

The union of all forms a self-similar fractal that is discontinuous between rational and irrational values of . This discontinuity is nonphysical, and continuity is recovered for a finite uncertainty in [1] or for lattices of finite size.[14] The scale at which the butterfly can be resolved in a real experiment depends on the system's specific conditions.[2]

Phase diagram, conductance and topology

The phase diagram of electrons in a two-dimensional square lattice, as a function of a perpendicular magnetic field, chemical potential and temperature, has infinitely many phases. Thouless and coworkers showed that each phase is characterized by an integral Hall conductance, where all integer values are allowed. These integers are known as Chern numbers.[2]

See also

References

  1. ^ a b c d e f g h i j k l Hofstadter, Douglas R. (1976). "Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields". Physical Review B. 14 (6): 2239–2249. Bibcode:1976PhRvB..14.2239H. doi:10.1103/PhysRevB.14.2239.
  2. ^ a b c d e Avron J, Osadchy D., and Seiler R. (2003). "A topological look at the quantum Hall effect". Physics Today. 53 (8): 38–42. Bibcode:2003PhT....56h..38A. doi:10.1063/1.1611351.
  3. ^ Harper, P G (1955-10-01). "Single Band Motion of Conduction Electrons in a Uniform Magnetic Field". Proceedings of the Physical Society. Section A. 68 (10): 874–878. Bibcode:1955PPSA...68..874H. doi:10.1088/0370-1298/68/10/304. ISSN 0370-1298.
  4. ^ Azbel', Mark Ya. (1964). "Energy Spectrum of a Conduction Electron in a Magnetic Field". Journal of Experimental and Theoretical Physics. 19 (3): 634–645.
  5. ^ Thouless D., Kohmoto M, Nightngale and M. den-Nijs (1982). "Quantized Hall conductance in a two-dimensional periodic potential". Physical Review Letters. 49 (6): 405–408. Bibcode:1982PhRvL..49..405T. doi:10.1103/PhysRevLett.49.405.
  6. ^ Kuhl, U.; Stöckmann, H.-J. (13 April 1998). "Microwave realization of the Hofstadter butterfly". Physical Review Letters. 80 (15): 3232–3235. Bibcode:1998PhRvL..80.3232K. doi:10.1103/PhysRevLett.80.3232.
  7. ^ Albrecht, C.; Smet, J. H.; von Klitzing, K.; Weiss, D.; Umansky, V.; Schweizer, H. (2001-01-01). "Evidence of Hofstadter's Fractal Energy Spectrum in the Quantized Hall Conductance". Physical Review Letters. 86 (1): 147–150. Bibcode:2001PhRvL..86..147A. doi:10.1103/PhysRevLett.86.147. ISSN 0031-9007. PMID 11136115.
  8. ^ Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; Taniguchi, T.; Watanabe, K.; Shepard, K. L.; Hone, J.; Kim, P. (30 May 2013). "Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices". Nature. 497 (7451): 598–602. arXiv:1212.4783. Bibcode:2013Natur.497..598D. doi:10.1038/nature12186. PMID 23676673. S2CID 119210000.
  9. ^ Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R.; Mucha-Kruczynski, M.; Piot, B. A.; Potemski, M.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F.; Fal’ko, V. I.; Geim, A. K. (30 May 2013). "Cloning of Dirac fermions in graphene superlattices". Nature. 497 (7451): 594–597. arXiv:1212.5012. Bibcode:2013Natur.497..594P. doi:10.1038/nature12187. hdl:10261/93894. PMID 23676678. S2CID 4431176.
  10. ^ Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C. (2013). "Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure". Science. 340 (6139): 1427–1430. arXiv:1303.6942. Bibcode:2013Sci...340.1427H. doi:10.1126/science.1237240. PMID 23686343. S2CID 37694594.
  11. ^ Roushan, P.; Neill, C.; Tangpanitanon, J.; Bastidas, V. M.; Megrant, A.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Foxen, B.; Giustina, M.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Neven, H.; Angelakis, D. G.; Martinis, J. (2017-12-01) [2017-09-20]. "Spectroscopic signatures of localization with interacting photons in superconducting qubits" [Spectral signatures of many-body localization with interacting photons]. Science. 358 (6367): 1175–1179. arXiv:1709.07108. Bibcode:2017Sci...358.1175R. doi:10.1126/science.aao1401. ISSN 0036-8075. PMID 29191906. S2CID 206662292.
  12. ^ Lu, Xiaobo; Lian, Biao; Chaudhary, Gaurav; Piot, Benjamin A.; Romagnoli, Giulio; Watanabe, Kenji; Taniguchi, Takashi; Poggio, Martino; MacDonald, Allan H.; Bernevig, B. Andrei; Efetov, Dmitri K. (2021-07-27). "Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle". Proceedings of the National Academy of Sciences. 118 (30): e2100006118. arXiv:2006.13963. Bibcode:2021PNAS..11800006L. doi:10.1073/pnas.2100006118. ISSN 0027-8424. PMC 8325360. PMID 34301893.
  13. ^ Wannier, G. H. (1978-08-01). "A Result Not Dependent on Rationality for Bloch Electrons in a Magnetic Field". Physica Status Solidi B. 88 (2): 757–765. Bibcode:1978PSSBR..88..757W. doi:10.1002/pssb.2220880243.
  14. ^ Analytis, James G.; Blundell, Stephen J.; Ardavan, Arzhang (May 2004). "Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems". American Journal of Physics. 72 (5): 613–618. Bibcode:2004AmJPh..72..613A. doi:10.1119/1.1615568. ISSN 0002-9505.

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

 

 

Schwenk crew on duty Schwenker-tripod from the smithy Schwenker (German: [ˈʃvɛŋkɐ] ⓘ) is a local term from the German state of Saarland, the Mosel Valley and big parts of Rheinland Pfalz and is used in three ways, all relating to the same grilled meat:[1] Schwenker or Schwenkbraten is a marinated pork neck steak which originates from the Saarland (known there as Schwenksteak) and is grilled on a Schwenker (2). Normally either a green herb or red paprika marinade is used...

 

 

American actress Rebekah KochanBornLas Vegas, Nevada, U.S.OccupationActressYears active2004–present Rebekah Kochan is an American actress. She is best known for her role as Tiffani von der Sloot in the Eating Out franchise.[1] Biography Kochan has been acting since she was nine years old. Her first role was in a Las Vegas production of Annie, where she played the lead. Filmography Year Title Role Notes 2004 Eating Out Tiffani von der Sloot 2005 Artistic License Start Here Girl ...

Fictional character from Marvel Comics This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Demogoblin – news · newspapers · books · scholar · JSTOR (October 20...

 

 

Irish surname McGovern Irish name: Mag ShamhráinEarlier spellingsMacGauran, MacGoveran, MacGowran, Magauran, MacGavern, Magavern, McGavern Anglicised Somers, SummersEtymologyA summery personalityPlace of originCounty Cavan, Ireland[1]MembersSamhradhánlived c. 1100 ADConnected familiesMcKiernan The surname McGovern (Irish: Mág Samhradháin), is of Irish origin and is found predominantly in the counties of Cavan (among the fifteen most common names), Fermanagh and Leitrim. The Irish ...

 

 

Town in the state of Florida, United States Town in Florida, United StatesTown of Orange ParkTownOrange Park, FloridaTop, left to right: Town Hall, Club Continental, Orange Park Mall, Best Bet, Doctors Lake, the Buckman Bridge viewed from Orange ParkLocation in Clay County and the state of FloridaCoordinates: 30°10′7″N 81°42′31″W / 30.16861°N 81.70861°W / 30.16861; -81.70861Country United StatesState FloridaCounty ClayIncorporated1877Governme...

This article is about the album. For the city, see Port St. Joe, Florida. 2018 studio album by Brothers OsbornePort Saint JoeStudio album by Brothers OsborneReleasedApril 20, 2018 (2018-04-20)GenreCountryLength37:56LabelEMI NashvilleProducerJay Joyce[1]Brothers Osborne chronology Pawn Shop(2016) Port Saint Joe(2018) Live at the Ryman(2019) Singles from Port Saint Joe Shoot Me StraightReleased: January 16, 2018 I Don't Remember Me (Before You)Released: October 8,...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

Cet article est une ébauche concernant une élection ou un référendum et l’Alberta. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 1955 1963 Élections générales albertaines de 1959 65 sièges de l'Assemblée législative (Majorité absolue : 33 sièges) 18 juin 1959 Type d’élection Élections législatives provinciales Crédit social – Ernest Manning Voix 230 283 55,69 %&#...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

 

Pharmaceutical company in Yongin, South Korea This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Green Cross South Korean company – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this message) GC Biopharma(Green Cross Corporation)FoundedOctober 5, 1967HeadquartersYongin, South KoreaKey peopleEun Chul Huh (Presi...

 

 

Fortaleza incaica de Chena Monumento Histórico de Chile Ruinas de la Huaca de ChenaLocalizaciónPaís ChileDivisión San BernardoDirección Cerros de Chena, San Bernardo Chile ChileCoordenadas 33°36′54″S 70°44′50″O / -33.61495833, -70.74709722Información religiosaCulto ViracochaAdvocación Inti RaymiDatos arquitectónicosTipo Huaca incaAño de inscripción 17 de agosto de 1977Altura 641 m s. n. m.[editar datos en Wikidata] La Fortaleza incaica de Che...

Illustration d'une addition matricielle L'addition matricielle est une opération mathématique qui consiste à produire une matrice qui est le résultat de l'addition de deux matrices de même type. Processus d'addition L'addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), A = ( a i j ) {\displaystyle A=(a_{ij})} et B = ( b i j ) {\displaystyle B=(b_{ij})} , notée A + B, est à nouveau une matrice ( c i j ) {\displaystyle (c_{ij})} ...

 

 

United States non-profit organization from 2017 to 2019 The Biden Foundation was a nonprofit organization under section 501(c)(3) of the United States tax code that existed from 2017 to 2019. It was established by former vice president of the United States Joe Biden and former second lady Jill Biden with the stated mission to champion progress and prosperity for American families.[1] Origins The initial establishment of the Biden Foundation as a 501(c)(3) organization was done, and re...

 

 

Simulated view of a black hole in front of the Large Magellanic Cloud, with gravitational lensing visible Spatial anomalies in fiction Black holes in fiction • Portable hole • Teleportation in fiction • Wormholes in fiction • Stargate • Warp drive • Hyperspace • Time travel in fiction Science fiction portalvte Black holes, objects whose gravity is so strong that nothing—including light—can escape them, have been depicted in fiction since at least the pulp era of science fic...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) حارة الفاروق الجنوبية  - حارة -  تقسيم إداري البلد  اليمن المحافظة محافظة صنعاء المديرية مدي�...

 

 

The Collection: Story Op.2Album kompilasi karya JonghyunDirilis24 April 2017 (2017-04-24)BahasaKoreanLabel S.M. Entertainment KT Music Kronologi Jonghyun 'She Is(2016) The Collection: Story Op.2 ' Poet | Artist(2018) 'The Collection: Story Op.1(2015) '''The Collection: Story Op.2(2017) Singel dalam album Story Op.2 Lonely (Feat. TaeYeon)Dirilis: 24 April 2017 The Collection: Story Op.2 (Hangul: 소품집: 이야기 Op.2; RR: Sopunjib: Iyagi Op.2) adalah album kompilasi kedua dan tera...

 

 

Pulau DevonKawasan Devon IslandGeografiLokasiTeluk BaffinKoordinat75°08′N 087°51′W / 75.133°N 87.850°W / 75.133; -87.850 (Pulau Devon)KepulauanKepulauan Ratu ElizabethKepulauan Arktik KanadaLuas55.247 km2Peringkat luaske-27Titik tertinggiDevon Ice Cap (1.920 m)PemerintahanNegaraKanadaWilayah NunavutRegionRegion QikiqtaalukKependudukanPendudukTidak berpenghuni Pulau Devon, pulau tak berpenghuni terbesar di Bumi, terletak di Teluk...

Hassan Rouhaniحسن روحانی‎ 7º Presidente della Repubblica Islamica dell'IranDurata mandato3 agosto 2013 –3 agosto 2021 Vice presidenteEshaq Jahangiri PredecessoreMahmud Ahmadinejad SuccessoreEbrahim Raisi Segretario generale del Movimento dei Paesi Non AllineatiDurata mandato3 agosto 2013 –17 settembre 2016 PredecessoreMahmud Ahmadinejad SuccessoreNicolás Maduro Presidente del Consiglio per il Discernimento del Centro di Ricerca StrategicaD...

 

 

Cet article est une ébauche concernant un coureur cycliste néerlandais. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Pour les articles homonymes, voir Karstens. Gerben KarstensInformationsNaissance 14 janvier 1942VoorburgDécès 8 octobre 2022 (à 80 ans)DongenNationalité néerlandaiseÉquipes professionnelles 04.1965-12.1965Televizier1966-1967Televizier-Batavus1968-1970Peugeot-BP-Michelin1971Goudsmi...