Hilbert–Bernays provability conditions

In mathematical logic, the Hilbert–Bernays provability conditions, named after David Hilbert and Paul Bernays, are a set of requirements for formalized provability predicates in formal theories of arithmetic (Smith 2007:224).

These conditions are used in many proofs of Kurt Gödel's second incompleteness theorem. They are also closely related to axioms of provability logic.

The conditions

Let T be a formal theory of arithmetic with a formalized provability predicate Prov(n), which is expressed as a formula of T with one free number variable. For each formula φ in the theory, let #(φ) be the Gödel number of φ. The Hilbert–Bernays provability conditions are:

  1. If T proves a sentence φ then T proves Prov(#(φ)).
  2. For every sentence φ, T proves Prov(#(φ)) → Prov(#(Prov(#(φ))))
  3. T proves that Prov(#(φ → ψ)) and Prov(#(φ)) imply Prov(#(ψ))

Note that Prov is predicate of numbers, and it is a provability predicate in the sense that the intended interpretation of Prov(#(φ)) is that there exists a number that codes for a proof of φ. Formally what is required of Prov is the above three conditions.

In the more concise notation of provability logic, letting denote " proves " and denote :

Use in proving Gödel's incompleteness theorems

The Hilbert–Bernays provability conditions, combined with the diagonal lemma, allow proving both of Gödel's incompleteness theorems shortly. Indeed the main effort of Godel's proofs lied in showing that these conditions (or equivalent ones) and the diagonal lemma hold for Peano arithmetics; once these are established the proof can be easily formalized.

Using the diagonal lemma, there is a formula such that .

Proving Godel's first incompleteness theorem

For the first theorem only the first and third conditions are needed.

The condition that T is ω-consistent is generalized by the condition that if for every formula φ, if T proves Prov(#(φ)), then T proves φ. Note that this indeed holds for an ω-consistent T because Prov(#(φ)) means that there is a number coding for the proof of φ, and if T is ω-consistent then going through all natural numbers one can actually find such a particular number a, and then one can use a to construct an actual proof of φ in T.

Suppose T could have proven . We then would have the following theorems in T:

  1. (by construction of and theorem 1)
  2. (by condition no. 1 and theorem 1)

Thus T proves both and . But if T is consistent, this is impossible, and we are forced to conclude that T does not prove .

Now let us suppose T could have proven . We then would have the following theorems in T:

  1. (by construction of and theorem 1)
  2. (by ω-consistency)

Thus T proves both and . But if T is consistent, this is impossible, and we are forced to conclude that T does not prove .

To conclude, T can prove neither nor .

Using Rosser's trick

Using Rosser's trick, one needs not assume that T is ω-consistent. However, one would need to show that the first and third provability conditions holds for ProvR, Rosser's provability predicate, rather than for the naive provability predicate Prov. This follows from the fact that for every formula φ, Prov(#(φ)) holds if and only if ProvR holds.

An additional condition used is that T proves that ProvR(#(φ)) implies ¬ProvR(#(¬φ)). This condition holds for every T that includes logic and very basic arithmetics (as elaborated in Rosser's trick#The Rosser sentence).

Using Rosser's trick, ρ is defined using Rosser's provability predicate, instead of the naive provability predicate. The first part of the proof remains unchanged, except that the provability predicate is replaced with Rosser's provability predicate there, too.

The second part of the proof no longer uses ω-consistency, and is changed to the following:

Suppose T could have proven . We then would have the following theorems in T:

  1. (by construction of and theorem 1)
  2. (by theorem 2 and the additional condition following the definition of Rosser's provability predicate)
  3. (by condition no. 1 and theorem 1)

Thus T proves both and . But if T is consistent, this is impossible, and we are forced to conclude that T does not prove .

The second theorem

We assume that T proves its own consistency, i.e. that:

.

For every formula φ:

(by negation elimination)

It is possible to show by using condition no. 1 on the latter theorem, followed by repeated use of condition no. 3, that:

And using T proving its own consistency it follows that:

We now use this to show that T is not consistent:

  1. (following T proving its own consistency, with )
  2. (by construction of )
  3. (by condition no. 1 and theorem 2)
  4. (by condition no. 3 and theorem 3)
  5. (by theorems 1 and 4)
  6. (by condition no. 2)
  7. (by theorems 5 and 6)
  8. (by construction of )
  9. (by theorems 7 and 8)
  10. (by condition 1 and theorem 9)

Thus T proves both and , hence is T inconsistent.

References

  • Smith, Peter (2007). An introduction to Gödel's incompleteness theorems. Cambridge University Press. ISBN 978-0-521-67453-9

Read other articles:

Artikel ini membutuhkan judul dalam bahasa Indonesia yang sepadan dengan judul aslinya. Dungeon crawl (Indonesia: perangkakan ruang bawah tanahcode: id is deprecated ) adalah sebuah jenis skenario dalam permainan bermain peran fantasi dimana para pahlawan menjelajahi lingkungan labirin (sebuah dungeon/ruang bawah tanah), bertarung dengan berbagai monster, dan mengambil barang berharga apapun yang mereka temukan. Karena kesederhanaannya, dungeon crawl dianggap lebih mudah bagi seorang gamemast...

 

Bandar Udara CanberraIATA: CBRICAO: YSCBWMO: 94926InformasiJenisPublikPengelolaCapital Airport Group Pty Ltd[1] Executive Chairman: Terry SnowMelayaniCanberraLokasiMajura, Wilayah Ibu Kota Australia, AustraliaKetinggian dpl mdplKoordinat35°18′25″S 149°11′42″E / 35.30694°S 149.19500°E / -35.30694; 149.19500Koordinat: 35°18′25″S 149°11′42″E / 35.30694°S 149.19500°E / -35.30694; 149.19500Situs webcanberraai...

 

'Pancake' Khemanit JamikornPancake pada acara SuperJiew (2010)Nama asalเขมนิจ จามิกรณ์LahirChayanit Jamikorn (Thai: ชญานิษฐ์ จามิกรณ์code: th is deprecated )27 Mei 1988 (umur 35)Bangkok, ThailandNama lainPancakePendidikanUniversitas Kasetsart (BA) Universitas Ramkhamhaeng (MD)PekerjaanActresssingermodelMCTahun aktif2005–presentTinggi174 cm (5 ft 8+1⁄2 in)GelarThai Supermodel Contest 2004 (P...

Scientology prison This article is about the Scientology facility. For other uses, see The Hole (disambiguation). The HoleThe Hole at Gold Base (also known as Int Base)General informationArchitectural styleTwo double-wide trailers linked togetherLocationGilman Hot Springs near Hemet, CaliforniaCoordinates33°50′06″N 116°59′19″W / 33.835134°N 116.988715°W / 33.835134; -116.988715OwnerChurch of ScientologyKnown forDegrading confinement of Scientology executive...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMA Negeri 3 Palembang – berita · surat kabar · buku · cendekiawan · JSTOR SMA Negeri 3 PalembangInformasiDidirikan18 Agustus 1961Jurusan atau peminatanMIA dan IISRentang kelasX, XI, XIIKurikulumKurikulu...

 

American politician (1862–1927) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2024) (Learn how and when to remove this template message) Ambrose Everett Burnside StephensMember of the U.S. House of Representativesfrom Ohio's 2nd districtIn officeMarch 4, 1919 – February 12, 1927Preceded by...

Kerajaan Ankole dan distriknya Bendera Kerajaan Ankole Ankole, juga disebut Nkore, adalah salah satu dari empat kerajaan tradisional di Uganda. Kerajaan ini terletak di barat daya Uganda, sebelah timur Danau Edward. Kerajaan ini dikuasai oleh Raja yang disebut Mugabe atau Omugabe dari Ankole. Kerajaan ini secara resmi dibubarkan tahun 1967 oleh pemerintahan Presiden Milton Obote, dan secara resmi masih belum direstorasi.[1] Penduduk Ankole disebut Banyankole (singular: Munyankole) dal...

 

Dick Sargent Dick Sargent, nome d'arte di Richard Stanford Cox (Carmel-by-the-Sea, 19 aprile 1930 – Los Angeles, 8 luglio 1994), è stato un attore statunitense. Indice 1 Biografia 2 Vita privata 3 Filmografia parziale 3.1 Cinema 3.2 Televisione 4 Doppiatori italiani 5 Note 6 Altri progetti 7 Collegamenti esterni Biografia Dick Sargent con Elizabeth Montgomery in Vita da strega (1971) È conosciuto per il ruolo di Darrin Stephens nelle ultime tre stagioni della serie televisiva Vita da stre...

 

John Paul Stevens Giudice della Corte Suprema degli Stati Uniti d'AmericaDurata mandato17 dicembre 1975 – 29 giugno 2010 PredecessoreWilliam O. Douglas SuccessoreElena Kagan Dati generaliPartito politicoPartito Repubblicano Firma John Paul Stevens (Chicago, 20 aprile 1920 – Fort Lauderdale, 16 luglio 2019) è stato un giurista statunitense, giudice associato della Corte Suprema degli Stati Uniti dal 1975 al 2010. È stato nominato dal presidente Gerald Ford. La sua giurispru...

Perjalanan PanjangAlbum studio karya JikustikDirilis27 Juni 2002GenrePopDurasi51:31LabelWarner Music IndonesiaKronologi Jikustik Seribu Tahun Repackaged (2001)Seribu Tahun Repackaged2001 Perjalanan Panjang (2002) Sepanjang Musim(2003)Sepanjang Musim2003 Perjalanan Panjang adalah album musik kedua karya Jikustik yang dirilis tahun 2002. Berisi 12 buah lagu dengan lagu Meninggalkanmu, Tak Ada Yang Abadi, dan Pandangi Langit Malam Ini sebagai lagu utama album ini.[1] Lagu Katarina, M...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Bataille de Gazala Théâtre des opérations du 21 janvier au 7 juillet 1942. Informations générales Date 26 mai – 21 juin 1942 Lieu Gazala (Libye italienne) Issue Victoire de l'Axe Belligérants Royaume-Uni Raj britannique Union d'Afrique du Sud France libre Armée polonaise de l'ouest  Reich allemand Royaume d'Italie Commandants Claude Auchinleck Neil Ritchie Erwin Rommel Ettore Bastico Forces en présence 110 000 hommes849 chars 90 000 hommes560 chars Pertes 15 000 tués et ...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

German–British record label This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Parlophone – news · newspapers · books · scholar · JSTOR (January 2011) (Learn how and when to remove this message) Parlophone RecordsParent company Carl Lindström Company (1896–1926) Columbia Graphophone Company (1926 – ...

 

For the 1976 film, see High Velocity (film). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: High Velocity – news · newspapers · books · scholar · JSTOR (October 2012) (Learn how and when to remove this message) 1995 video gameHigh Velocity - Mountain Racing ChallengeJapanese cover artDeveloper(s)CavePublish...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

Former British government website DirectgovScreenshot Type of siteGovernment informationAvailable inEnglish and WelshOwnerHM GovernmentCreated byUK government departmentsURLdirect.gov.uk (archive)CommercialNoRegistrationNoLaunched1 April 2004; 20 years ago (2004-04-01)Current statusOffline 17 October 2012; 11 years ago (2012-10-17)Content licenseCrown copyright See copyright page for licencing information. Directgov was the British government...

 

Part of a series onDiscrimination Forms Institutional Structural Statistical Taste-based Attributes Age Caste Class Dialect Disability Genetic Hair texture Height Language Looks Mental disorder Race / Ethnicity Skin color Scientific racism Rank Sex Sexual orientation Species Size Viewpoint Social Arophobia Acephobia Adultism Anti-albinism Anti-autism Anti-homelessness Anti-drug addicts Anti-intellectualism Anti-intersex Anti-left handedness Anti-Masonry Antisemitism Aporophobia Audi...

Bar that does not serve alcohol Fitzpatricks, a temperance bar in Rawtenstall, England, that was established in 1890 A temperance bar, also known as an alcohol-free bar, sober bar, or dry bar, is a type of bar that does not serve alcoholic beverages.[1][2][3] An alcohol-free bar can be a business establishment or located in a non-business environment or event, such as at a wedding.[4] Alcohol-free bars typically serve non-alcoholic beverages, such as non-alcoho...

 

(fr)Banu Hilal(ar)بَنُو هِلَالٍHilalites Tribu arabe des Banu Hilal, dans le sud d'Oran en Algérie, 1888. Période Xe – XIIIe siècle Ethnie Arabes (Arabes du Nord) Hawazin Langue(s) Arabe Religion Islam Région d'origine Arabie Région actuelle Algérie Tunisie Libye Égypte Maroc Mauritanie Arabie saoudite Syrie Irak Qatar Yémen Émirats arabes unis modifier  Les Banu Hilal, Hilalites ou Hilaliens (en arabe : بنو هلال) étaient une confédération ...