Blichfeldt was one of five children of a Danish farming couple, Erhard Christoffer Laurentius Blichfeldt and Nielsine Maria Schlaper; many of his father's ancestors were ministers. He was born on January 9, 1873, in Iller, a village in the Sønderborg Municipality of Denmark.[1][2][3] In 1881, the family moved to Copenhagen.[2] In 1888, he passed with high honors the entrance examinations for the University of Copenhagen,[4] but his family was unable to afford sending him to the university.[1] Instead, later the same year, they moved again to the US. He worked for several years as a lumberman, a railway worker, a traveling surveyor, and then as a government draftsman in Bellingham, Washington.[1][4][5]
In 1894, he became a student at Stanford University,[1] which admitted its first students in 1891[3] and did not charge tuition at the time. He did not have a high school diploma, so he had to be admitted as a special student, with a letter of support from his drafting supervisor. By 1895 he had become a regular student,[6] and he earned a bachelor's degree there in 1896,[1][4] one of three graduating mathematics students that year.[6] He stayed for a master's degree in 1897,[1][4] and in the same year was appointed an instructor at Stanford.[6] It was customary to travel to Europe for doctoral study in mathematics, and with financial support from Stanford professor Rufus L. Green he traveled to Leipzig University and completed a Ph.D. there in 1898.[1][4][6] His doctoral dissertation, On a Certain Class of Groups of Transformation in Three-dimensional Space, was supervised by Sophus Lie, and he graduated summa cum laude.[1][4][6][7]Eric Temple Bell suggests that he may have chosen to work with Lie, among other famous mathematicians of the time, because of their shared Scandinavian heritage, and by doing so he set the course of his life's work.[2]
Blichfeldt remained unmarried throughout his life.[2] He died on November 16, 1945, in Palo Alto, California, of complications following an operation for a heart attack.[1][5][2]
Contributions
Blichfeldt made his first mathematical publication, on Heronian triangles, as an undergraduate in 1896.[2][A1]
Blichfeldt's work in group theory includes an improved bound for the Jordan–Schur theorem, that finite linear groups have normal abelian subgroups of index bounded by a function of their dimension,[8][9][A2] and a result relating the order of a permutation group to the numbers of fixed points of its elements.[10][A3] With George Abram Miller and Leonard Eugene Dickson, Blichfeldt wrote a comprehensive 1916 text on what was known at the time in the theory of finite groups.[B1] It was divided into three parts by the specializations of the authors: Miller contributed material on abstract groups and permutation groups, Dickson described Galois groups, and Blichfeldt wrote the portions of the book concerning groups of complex linear transformations (in modern terms, the representation theory of finite groups).[11] Blichfeldt's own book, published a year later,[B2] expanded his exposition of linear transformation groups.[12] Both books detail his classification of the four-dimensional group representations.[4][12][6][11]
^Betten, Anton; Braun, Michael; Fripertinger, Harald; Kerber, Adalbert; Kohnert, Axel; Wassermann, Alfred (2006), "Definition 7.5.10: Hermite's Constant", Error-correcting linear codes: Classification by isometry and applications, Algorithms and Computation in Mathematics, vol. 18, Springer-Verlag, Berlin, p. 585, ISBN978-3-540-28371-3, MR2265727
^de Laat, David; Vallentin, Frank (2016), "A breakthrough in sphere packing: the search for magic functions", Nieuw Archief voor Wiskunde, 17 (3): 184–192, arXiv:1607.02111, MR3643686