H. G. Wells: War with the World
|
Read other articles:
Замок Ангулем Ангулемский замок (фр. Château d'Angoulême) — замок в городе Ангулем в департаменте Шаранта. Единственные сохранившиеся его части — крепость-донжон Лузиньяна и башня Валуа. В XIX веке к ним была пристроена ратуша в неоготическом стиле с элементами Ренесса...
Shopping mall in Ontario, CanadaEglinton Square Shopping CentreEglinton Square in 2023LocationToronto, Ontario, CanadaCoordinates43°43′25″N 79°17′59″W / 43.7236°N 79.2996°W / 43.7236; -79.2996Address1 Eglinton SquareOpening date1953DeveloperOxford PropertiesOwnerKingsett Capital, Bentall Kennedy (Canada) LPNo. of stores and services80+No. of anchor tenants2Total retail floor area279,000 sq ft (25,900 m2)No. of floors1Websiteeglintonsquare.ca ...
Suburb of Adelaide, South AustraliaKensingtonAdelaide, South AustraliaPopulation1,808 (SAL 2021)[1]Postcode(s)5068Area0.5 km2 (0.2 sq mi)Location5 km (3 mi) east of AdelaideLGA(s)City of Norwood Payneham St PetersState electorate(s)DunstanFederal division(s)Sturt Suburbs around Kensington: Norwood Beulah Park Kensington Park Norwood Kensington Kensington Park Toorak Gardens Marryatville Leabrook Kensington is a suburb of Adelaide, South Australia in the ...
SacsayhuamánSaqsaywamanSalah satu sisi tembok SacsayhuamánLokasi di PeruLokasiCusco, Region Cusco, PeruKoordinat13°30′28″S 71°58′56″W / 13.50778°S 71.98222°W / -13.50778; -71.98222Koordinat: 13°30′28″S 71°58′56″W / 13.50778°S 71.98222°W / -13.50778; -71.98222JenisBentengBagian dariCuscoSejarahBudayaKerajaan Inka Muyuq Marka Tembok batu tampak dari dekat Sacsayhuamán atau Saksaywaman adalah sebuah benteng kota di u...
Cet article est une ébauche concernant un coureur cycliste belge. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Tom DevriendtTom Devriendt lors de l'arrivée du Grand Prix Pino Cerami 2015 à Frameries, qu'il termine troisième.InformationsNaissance 29 octobre 1991 (32 ans)FurnesNationalité belgeÉquipe actuelle Q36.5 Pro Cycling TeamÉquipes non-UCI 2010New Heebra-Lombarden2011EFC-Quick Step2012-2013E...
1975 talks between Rhodesia and Zambia The Victoria Falls Bridge, seen from the Rhodesian side in 1975. Talks between the African National Council and the Rhodesian government took place at the centre of the bridge on 26 August that year. vteRhodesian Bush WarFirst Phase (1964–1972) Oberholzer murder Sinoia Pagoda Yodel Nickel Cauldron Flotilla Griffin Excess Birch Alcora Exercise Panga Second Phase (1972–1979) Altena Farm Whistlefield Farm St Alberts School Overload Victoria Falls Long J...
British state-owned rail transport operator (1948–1997) This article is about the nationalised railway service from 1948 to 1997. For current rail transport in Great Britain, see Rail transport in Great Britain. For a historic overview, see History of rail transport in Great Britain. British Railways redirects here. For the planned public body that will manage railway infrastructure from 2024, see Great British Railways. British RailwaysBritish RailCompany typeState-owned enterpriseIndustry...
Season of television series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: ...
Protective device in ritual magic For other uses, see Magic circle (disambiguation). The Magic Circle by John William Waterhouse (1886) A Solomonic circle with a triangle of conjuration in the East A magic circle is a circle of space marked out by practitioners of some branches of ritual magic, which they generally believe will contain energy and form a sacred space, or will provide them a form of magical protection, or both. It may be marked physically, drawn in a material like salt, flour, ...
Fictional character in Capcom's Mega Man X series Fictional character XMega Man characterConcept art of X as seen in Maverick Hunter X by Tatsuya YoshikawaFirst appearanceMega Man X (1993)Last appearanceMega Man X Dive (2020)Created byKeiji InafuneHayato KajiVoiced by English Ruth Shiraishi (X4)Peter von Gomm (X7)Mark Gatha (2004–2006)Iain Gibb (Mega Man ZX Advent)Zach LeBlanc (Puzzle Fighter)Ted Sroka (2017–present) Japanese Megumi Ogata (X1)[1]Kentaro Ito (X4)Showtaro Morikubo (...
国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚 吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...
Cet article présente une liste de films produits en Union soviétique en 1956. 1956 Les titres en français sont en grande majorité des traductions et non les titres attribués par les distributeurs dans les pays francophones. Ces inventaires annuels de films ne sont pas évidents à établir parce que : a) Il faut distinguer l'année de tournage et l'année de la première qui ne sont pas souvent les mêmes. b) Le tournage peut se dérouler sur plusieurs années ou à cheval sur deux ...
Tin(IV) bromide Names IUPAC name tetrabromostannate Other names tin tetrabromide, stannic bromide, bromostannic acid Identifiers CAS Number 7789-67-5 Y 3D model (JSmol) Interactive image ChemSpider 23018 N ECHA InfoCard 100.029.258 EC Number 232-184-5 PubChem CID 24616 UNII 23C21BW281 Y CompTox Dashboard (EPA) DTXSID1064873 InChI InChI=1S/4BrH.Sn/h4*1H;/q;;;;+4/p-4 NKey: LTSUHJWLSNQKIP-UHFFFAOYSA-J NInChI=1/4BrH.Sn/h4*1H;/q;;;;+4/p-4Key: LTSUHJWLSNQKIP-XBHQ...
British politician (1899–1962) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Charles Rhys, 8th Baron Dynevor – news · newspapers · books · scholar · JSTOR (April 2013) Charles RhysBtMember of Parliamentfor GuildfordIn office1931–1935Preceded bySir Henry BuckinghamSucceeded bySir John JarvisMe...
Circles whose tangent lines at the points of intersection are perpendicular This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message) Three mutually orthogonal circles In geometry, two circles are said to be orthogonal if their respective tangent lines at the points of intersection...
American baseball player (born 1985) Baseball player Gio GonzálezGonzález with the Nationals in 2012PitcherBorn: (1985-09-19) September 19, 1985 (age 38)Hialeah, Florida, U.S.Batted: RightThrew: LeftMLB debutAugust 6, 2008, for the Oakland AthleticsLast MLB appearanceSeptember 27, 2020, for the Chicago White SoxMLB statisticsWin–loss record131–101Earned run average3.70Strikeouts1,860 Teams Oakland Athletics (2008–2011) Washington Nationals (2012–20...
Mufti[1]Ismail Ibn Musa MenkMenk pada 2015Lahir27 Juni 1975 (umur 49)Salisbury, Rhodesia (sekarang Harare, Zimbabwe)KebangsaanZimbabwean[2]PekerjaanPembicara motivasi, ulama Islam, Mufti Agung[1]ZamanKontemporerKarya terkenalMotivational MomentsPenghormatanThe 500 Most Influential Muslims (2013–2014, 2017) Mufti Agung Zimbabwe Informasi pribadiAgamaIslamPendidikanKantharia Darul Uloom[3]Pemimpin MuslimPenghargaanPenghargaan KSBEA 2015 untuk Bimbingan So...
American lawyer and politician (1928–2019) For other people named Jack Edwards, see Jack Edwards (disambiguation). Jack EdwardsMember of the U.S. House of Representativesfrom Alabama's 1st districtIn officeJanuary 3, 1965 – January 3, 1985Preceded byFrank W. BoykinSucceeded bySonny Callahan Personal detailsBornWilliam Jackson Edwards(1928-09-20)September 20, 1928Birmingham, Alabama, U.S.DiedSeptember 27, 2019(2019-09-27) (aged 91)Fairhope, Alabama, U.S.Political ...
Catalan-French baroque painter (1659–1743) You can help expand this article with text translated from the corresponding article in French. (July 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not tra...
Wave that remains in a constant position Animation of a standing wave (red) created by the superposition of a left traveling (blue) and right traveling (green) wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The ...