Gunnar Degelius
|
Read other articles:
An-Nadi'PermukimanAn-Nadi'Location in the Kingdom of Saudi ArabiaKoordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Koordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Negara Arab SaudiPemerintahan • Gubernur Pangeran RiyadhFaisal bin Bandar Al Saud • Wali kotaIbraheem Mohammed Al-SultanKetinggian612 m (2,008 ft)Zona waktuUTC+3 (AST) • Musim panas (...
The Tilbury in 2008 The Tilbury is a public house and restaurant in Datchworth, Hertfordshire, England. It was formerly known as The Inn on the Green and The Three Horseshoes. Architecture The brick building is Grade II listed and dates from the early eighteenth century with later additions.[1] References ^ Historic England. The Inn on the Green (1052280). National Heritage List for England. Retrieved 2 December 2016. External links Media related to The Tilbury, Datchworth at Wikimed...
Jacob ArtistArtist pada Desember 2013Lahir17 Oktober 1992 (umur 31)Buffalo, New York, Amerika SerikatPekerjaan Aktor Penyanyi Penari Tahun aktif2011–sekarang Jacob Artist (lahir 17 Oktober 1992) adalah aktor, penyanyi, dan penari Amerika Serikat. Ia paling dikenal untuk perannya sebagai Jake Puckerman dalam seri drama komedi musikal Fox Glee dan sebagai Brandon Fletcher dalam seri drama cerita seru ABC Quantico.[1][2] Referensi ^ Ausiello, Michael. Glee Scoop: Mee...
Piala FA 2003–2004Negara Inggris WalesJuara bertahanArsenalJuaraManchester United(gelar ke-11)Tempat keduaMillwall← 2002–2003 2004–2005 → Piala FA 2003–2004 adalah edisi ke-123 dari penyelenggaraan Piala FA, turnamen tertua dalam sepak bola di Inggris. Edisi ini dimenangkan oleh Manchester United setelah mengalahkan Millwall pada pertandingan final dengan skor 3–0. Final Artikel utama: Final Piala FA 2004 Manchester United v Millwall 22 Mei 200415.00 BST Manchester Uni...
Arrondissement in Ouest, HaitiPort-au-Prince Arrondissement Pòtoprens AwondismanArrondissementMap of the arrondissement (red) within the Ouest department.Country HaitiDepartmentOuestArea[1] • Arrondissement735.78 km2 (284.09 sq mi) • Urban161.72 km2 (62.44 sq mi) • Rural574.06 km2 (221.65 sq mi)Population (2015)[1] • Arrondissement2,759,991 • Density3,800/km2 (9,...
Government agency Public Prosecution Service of CanadaService des poursuites pénales du CanadaAgency overviewFormed2006 (2006)PrecedingFederal Prosecution ServiceJurisdictionCanadaHeadquarters160 Elgin Street – 12th Floor, Ottawa, Ontario, K1A 0H8Employees1040170 private-sector law firms432 individually appointed lawyersAnnual budget$201,300,000 (2018–19)[1]Minister responsibleHon. Arif Virani, Attorney General of CanadaAgency executiveKathleen Roussel, Director of Public Pr...
American political activist (born 1941) This article may be unbalanced towards certain viewpoints. Please improve the article by adding information on neglected viewpoints, or discuss the issue on the talk page. (February 2023)This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially ...
Elizabeth II's reign in Malta from 1964 to 1974 Queen of MaltaReġina ta' Malta[1][2]Coat of arms of MaltaElizabeth II DetailsStyleHer MajestyFormation21 September 1964Abolition13 December 1974 Elizabeth II was the only queen of the State of Malta, which existed from 1964 to 1974. The State of Malta was an independent sovereign state and a constitutional monarchy, which shared a monarch with other Commonwealth realms, including the United Kingdom. Elizabeth's constitutional ro...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...
هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...
Cet article est une ébauche concernant l’histoire de France et le droit français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Constitution de l’an XConstitution du 4 août 1802 Données clés Page de couverture du Sénatus-consulte organique du 16 thermidor an X. Présentation Titre Sénatus-consulte organique du 16 thermidor an X Pays République française (Consulat à vie) Type Constitution Br...
اضغط هنا للاطلاع على كيفية قراءة التصنيف الرئيسيات [1]العصر: الباليوسيني المتأخر–الوقت الحالي، 58–0 مليون سنة قك ك أ س د ف بر ث ج ط ب ن بعض أنواع الرئيسيات من اليمين إلى اليسار: الترسير الفلبيني والآيآي اللورس النحيل الأحمر والليمور حلقي الذيل الطمارين الأسدي ذهبي ال�...
Премьер-министр Финляндиифин. pääministeri[1]швед. statsminister[2]северносаам. oaiveministtar[3]инари-саам. uáiviminister[4]колтта-саам. väʹlddminister[5][6] Эмблема премьер-министра Финляндии Должность занимает Петтери Орпо с 20 июня 2023 Должность Резиденция Кесяранта[7...
Codex Ebnerianus, Minuscule 105, (abad ke-12), Injil Yohanes 1:5b-10 Minuscule Perjanjian Baru adalah suatu salinan tulisan tangan yang memuat sebagian Alkitab Kristen bagian Perjanjian Baru yang ditulis dengan huruf-huruf Yunani dalam gaya tulisan huruf kecil dan miring, disebut minuscule, yang dikembangkan dari gaya tulisan Uncial.[1] Kebanyakan naskah minuscule masih ditulis di atas lembaran perkamen. Kertas baru digunakan mulai abad ke-12. Minuscule Perjanjian Baru berbeda dengan:...
British analytic philosopher Margaret MacDonaldBorn(1903-04-09)9 April 1903London, EnglandDied7 January 1956(1956-01-07) (aged 52)London, England Margaret MacDonald (9 April 1903[1] – 7 January 1956) was a British analytic philosopher. She worked in the areas of philosophy of language, political philosophy and aesthetics. Life and education Margaret MacDonald was born in London and abandoned as a child.[2][3] She was educated at University College London and was...
For broader coverage of this topic, see Plate theory. Deformation of a thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue) The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love[1] using assumptions proposed by Kirch...
For District of Mission, see Mission, British Columbia. Neighborhood in San Francisco, California, United StatesMission District The MissionNeighborhoodMission DistrictLocation within Central San FranciscoCoordinates: 37°46′N 122°25′W / 37.76°N 122.42°W / 37.76; -122.42Country United StatesState CaliforniaCity and county San FranciscoGovernment • SupervisorHillary Ronen (D) • AssemblymemberMatt Haney (D)[1]...
LibraryThingURLwww.librarything.comTipeKomunitas dan KatalogPendaftaranBebasPemilik Tim Spalding (mayoritas) AbeBooks CIG PembuatTim SpaldingBerdiri sejak29 Agustus 2005; 18 tahun lalu (2005-08-29)Lokasi kantor pusatPortland, Maine Peringkat Alexa20.562 (29 November 2017) StatusAktif LibraryThing adalah aplikasi katalog sosial berbentuk aplikasi web yang bertujuan untuk menyimpan dan berbagi katalog buku dan berbagai jenis metadata buku yang digunakan oleh para penulis, perpustakaan, pen...
Keuskupan Agung PiuraArchidioecesis PiurensisKatedral Santo Mikael Malaikat AgungLokasiNegaraPeruStatistikLuas33.510 km2 (12.940 sq mi)Populasi- Total- Katolik(per 2004)1.302.5511,250,448 (96.0%)InformasiRitusRitus LatinPendirian29 Februari 1940 (84 tahun lalu)KatedralCatedral de San Miguel ArcángelKepemimpinan kiniPausFransiskusUskupJosé Antonio Eguren Anselmi, S.C.V.Peta Keuskupan Agung Piura (bahasa Latin: Piuren(sis)) adalah sebuah keuskupan agung ...
In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. (Over an algebraically closed field such as the complex numbers, these fibers are elliptic curves, perhaps without a chosen origin.) This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change. The surface and the base curve are ...