Grothendieck–Katz p-curvature conjecture

In mathematics, the Grothendieck–Katz p-curvature conjecture is a local-global principle for linear ordinary differential equations, related to differential Galois theory and in a loose sense analogous to the result in the Chebotarev density theorem considered as the polynomial case. It is a conjecture of Alexander Grothendieck from the late 1960s, and apparently not published by him in any form.

The general case remains unsolved, despite recent progress; it has been linked to geometric investigations involving algebraic foliations.

Formulation

In a simplest possible statement the conjecture can be stated in its essentials for a vector system written as

for a vector v of size n, and an n-by-n matrix A of algebraic functions with algebraic number coefficients. The question is to give a criterion for when there is a full set of algebraic function solutions, meaning a fundamental matrix (i.e. n vector solutions put into a block matrix). For example, a classical question was for the hypergeometric equation: when does it have a pair of algebraic solutions, in terms of its parameters? The answer is known classically as Schwarz's list. In monodromy terms, the question is of identifying the cases of finite monodromy group.

By reformulation and passing to a larger system, the essential case is for rational functions in A and rational number coefficients. Then a necessary condition is that for almost all prime numbers p, the system defined by reduction modulo p should also have a full set of algebraic solutions, over the finite field with p elements.

Grothendieck's conjecture is that these necessary conditions, for almost all p, should be sufficient. The connection with p-curvature is that the mod p condition stated is the same as saying the p-curvature, formed by a recurrence operation on A,[1] is zero; so another way to say it is that p-curvature of 0 for almost all p implies enough algebraic solutions of the original equation.

Katz's formulation for the Galois group

Nicholas Katz has applied Tannakian category techniques to show that this conjecture is essentially the same as saying that the differential Galois group G (or strictly speaking the Lie algebra g of the algebraic group G, which in this case is the Zariski closure of the monodromy group) can be determined by mod p information, for a certain wide class of differential equations.[2]

Progress

A wide class of cases has been proved by Benson Farb and Mark Kisin;[3] these equations are on a locally symmetric variety X subject to some group-theoretic conditions. This work is based on the previous results of Katz for Picard–Fuchs equations (in the contemporary sense of the Gauss–Manin connection), as amplified in the Tannakian direction by André. It also applies a version of superrigidity particular to arithmetic groups. Other progress has been by arithmetic methods.[4]

History

Nicholas Katz related some cases to deformation theory in 1972, in a paper where the conjecture was published.[5] Since then, reformulations have been published. A q-analogue for difference equations has been proposed.[6]

In responding to Kisin's talk on this work at the 2009 Colloque Grothendieck,[7] Katz gave a brief account from personal knowledge of the genesis of the conjecture. Grothendieck put it forth in public discussion in Spring 1969, but wrote nothing on the topic. He was led to the idea by foundational intuitions in the area of crystalline cohomology, at that time being developed by his student Pierre Berthelot. In some way wishing to equate the notion of "nilpotence" in the theory of connections, with the divided power structure technique that became standard in crystalline theory, Grothendieck produced the conjecture as a by-product.

Notes

  1. ^ Daniel Bertrand, Bourbaki Seminar 750, 1991-2, section 5.
  2. ^ Katz, Nicholas M. (1982). "A conjecture in the arithmetic theory of differential equations" (PDF). Bull. Soc. Math. France. 110 (2): 203–239. doi:10.24033/bsmf.1960.
  3. ^ Farb, Benson; Kisin, Mark (2009). "Rigidity, Locally Symmetric Varieties, and the Grothendieck–Katz Conjecture" (PDF). Int Math Res Notices. 2009 (22): 4159–4167. CiteSeerX 10.1.1.158.3198. doi:10.1093/imrn/rnp082.
  4. ^ Chambert-Loir, Antoine (2002). "Théorèmes d'algébrisation en géométrie diophantienne". arXiv:math/0103192.
  5. ^ Katz, Nicholas M. (1972). "Algebraic solutions of differential equations (p-curvature and the Hodge filtration)". Invent. Math. 18 (1–2): 1–118. Bibcode:1972InMat..18....1K. doi:10.1007/BF01389714. S2CID 119830251.
  6. ^ Di Vizio, Lucia (2002). "Arithmetic theory of q -difference equations". Invent. Math. 150 (3): 517–578. arXiv:math/0104178. Bibcode:2002InMat.150..517D. doi:10.1007/s00222-002-0241-z. S2CID 119583087.
  7. ^ Video record.

References

  • Nicholas M. Katz, Rigid Local Systems, Chapter 9.

Further reading

  • Jean-Benoît Bost, Algebraic leaves of algebraic foliations over number fields, Publications Mathématiques de L'IHÉS, Volume 93, Number 1, September 2001
  • Yves André, Sur la conjecture des p-courbures de Grothendieck–Katz et un problème de Dwork, in Geometric Aspects of Dwork Theory (2004), editors Alan Adolphson, Francesco Baldassarri, Pierre Berthelot, Nicholas Katz, François Loeser
  • Anand Pillay (2006), Differential algebra and generalizations of Grothendieck's conjecture on the arithmetic of linear differential equations

Read other articles:

Cet article est une ébauche concernant le droit français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Article 46 de la Constitution du 4 octobre 1958 Données clés Présentation Pays France Langue(s) officielle(s) Français Type Article de la Constitution Adoption et entrée en vigueur Législature IIIe législature de la Quatrième République française Gouvernement Charles de Gaulle (3e) Promulgation 4...

 

Women's high jump at the 2016 IAAF World Indoor ChampionshipsVenueOregon Convention CenterDatesMarch 20Competitors11 from 10 nationsWinning height1.96Medalists  Vashti Cunningham   United States Ruth Beitia   Spain Kamila Lićwinko   Poland← 20142018 → 2016 IAAF WorldIndoor ChampionshipsTrack events60 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60 m hurdlesmenwomen4 × 400 m relaymen...

 

Tour des Alpes 2017 GénéralitésCourse41e Tour des AlpesCompétitionUCI Europe Tour 2017 2.HCÉtapes5Dates17 – 21 avril 2017Distance787,7 kmPays Italie AutricheLieu de départKufsteinLieu d'arrivéeTrenteÉquipes18Partants139Arrivants109Vitesse moyenne37,821 km/hSite officielSite officielRésultatsVainqueur Geraint Thomas (Sky)Deuxième Thibaut Pinot (FDJ)Troisième Domenico Pozzovivo (AG2R La Mondiale)Meilleur grimpeur Alexander Foliforov (Gazprom-RusVelo)Meilleur sprinteur Pascal Ackerm...

JuventudeCalcio Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Rosso, bianco Dati societari Città Primavera do Leste Nazione  Brasile Confederazione CONMEBOL Federazione CBF Campionato inattivo Fondazione 1982 Stadio Asa Delta(5 000 posti) Palmarès Si invita a seguire il modello di voce La Sociedade Esportiva e Recreativa Juventude, noto anche semplicemente come Juventude, è una società calcistica brasiliana con sede nella città di Primavera do Leste, nello st...

 

Satu Mare SzatmárnémetiKotaLeft to right: Dacia Hotel, Firemen's Tower, Vécsey Palace (art museum), Chain Church, Roman Catholic cathedral Lambang kebesaranLokasi Satu MareNegara RumaniaCountyRO-SMMetropolitan areaSatu Mare metropolitan areaStatusCounty capitalFounded972 (first official record as Villa Zotmar)Component villagesSătmărelPemerintahan • MayorDorel Coica (PSD) • Deputy MayorRadu Roca (PSD) • Deputy MayorMarcela Papici (PNL)Luas ...

 

For the Australian field hockey player, see Russell Ford. Canadian baseball player Baseball player Russ FordFord in 1911PitcherBorn: (1883-04-25)April 25, 1883Brandon, Manitoba, CanadaDied: January 24, 1960(1960-01-24) (aged 76)Rockingham, North Carolina, U.S.Batted: RightThrew: RightMLB debutApril 28, 1909, for the New York HighlandersLast MLB appearanceAugust 16, 1915, for the Buffalo BluesMLB statisticsWin–loss record100–71Earned run average2.59Strike...

Preston —  Kota  — Pasar Preston Flag, termasuk Sessions House, the Cenotaph dan Museum Harris Arms of the City Council Population 122.719 (Termasuk Fulwood, yang membentuk keseluruhan daerah unparished, 2011) Demonim Prestonian Distrik Preston County shire Lancashire Region Negara konstituen Inggris Negara berdaulat Britania Raya Kota pos PRESTON Distrik kode pos PR1-PR2 Kode telepon 01772 Polisi Pemadam kebakaran Ambulans Parlemen ...

 

Cocktail of vodka and coffee liqueur This article is about a cocktail. For African diaspora in Russia, see Afro-Russian. For other uses, see Black Russian (disambiguation). Black RussianIBA official cocktailA black Russian cocktailTypeCocktailBase spirit Vodka ServedOn the rocks: poured over iceStandard drinkware Old fashioned glassIBA specifiedingredients† 50 ml Vodka 20 ml Coffee liqueur PreparationPour the ingredients into the old fashioned glass filled with ice cubes. Stir gen...

 

Share of the population without access to an improved water source, 2020 Global access to clean water is a significant global challenge that affects the health, well-being, and development of people worldwide. While progress has been made in recent years, millions of people still lack access to safe and clean drinking water sources. According to the World Health Organization (WHO) and UNICEF, as of 2020, approximately two billion people globally do not have access to safely managed drinking ...

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Western Asia Asia portalThis template is within the scope of the WikiProject Western Asia, which collaborates on articles related to Western Asia. To participate, you can edit this article or visit the project page for more details.Western AsiaWikipedia:WikiProject Western AsiaTemplate:WikiProject Western AsiaWestern Asia articles Iran Iran portalThis template is wit...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「...

 

Kepala sapi adalah bagian daging sapi sebelah kepala. Kepala sapi ini tidak banyak dagingnya namun mengandung beberapa bagian yang dianggap delicacy oleh sebagian orang. Otak sapi biasa dimasak sebagai gulai dalam Masakan Padang. Sementara itu hidung dan bibirnya dipakai sebagai pelengkap rujak cingur, makanan Surabaya. Kemudian lidahnya sering diasap. lbsBagian daging sapiAtas Paha depan Daging iga Has dalam Has luar Tanjung Lamosir Penutup Punuk Tulang T Hidung Lidah Ekor Leher Kepala Bawah...

West Bromwich Albion 2012–13 football seasonWest Bromwich Albion2012–13 seasonChairmanJeremy PeaceManagerSteve ClarkeStadiumThe HawthornsPremier League8thFA CupThird roundLeague CupThird roundTop goalscorerLeague: Romelu Lukaku (17)All: Romelu Lukaku (17)Highest home attendance26,039 (vs. Liverpool, 18 August 2012)Lowest home attendance11,184 (vs. Queens Park Rangers, 18 January 2013) Home colours Away colours ← 2011–122013–14 → The 2012–13 season was West Bro...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2021)Learn how and when to remove this message قانون الإصلاح العقاري الموريتاني لعام 1983 هو قانون موريتاني يتناول حيازة الأراضي في موريتانيا.[1] نبذة كان السبب الأول الكامن وراء ...

 

Lizy-sur-Ourcq La mairie. Blason Administration Pays France Région Île-de-France Département Seine-et-Marne Arrondissement Meaux Intercommunalité Communauté de communes du Pays de l'Ourcq Maire Mandat Maxence Gille 2020-2026 Code postal 77440 Code commune 77257 Démographie Gentilé Lizéens Populationmunicipale 3 519 hab. (2021 ) Densité 315 hab./km2 Géographie Coordonnées 49° 01′ 33″ nord, 3° 01′ 22″ est Altitude Min. 45 m...

Національні символи Ізраїлю — символи що використовуються в Ізраїлі і закордоном представляють країну та її людей. Зміст 1 Національний прапор — прапор Ізраїлю 2 Національний герб — Герб Ізраїлю 3 Національний гімн — «Хатіква» 4 Національні кольори — сині...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. خريطة لكوبا (أحمر)، أنغولا (أخضر)، وجنوب أفريقيا (أزرق) في نوفمبر 1975، وعشية استقلال أنغولا، بدأت كوبا بتدخل عسكري واسع النطاق دعماً للحركة الشعبية لتحرير أنغولا (MPLA) ذات الميول...

 

Type of university affiliated with the Catholic Church Catholic University redirects here. For the Catholic university in Washington, D.C., see Catholic University of America. For Catholic primary and secondary education, see Catholic school. Dinand Library at the College of the Holy Cross in Worcester, Massachusetts, U.S. Catholic higher education includes universities, colleges, and other institutions of higher education privately run by the Catholic Church, typically by religious institute...

Australian soccer player Robbie Middleby Middleby playing for Sydney FC in 2008Personal informationFull name Robert MiddlebyDate of birth (1975-08-09) 9 August 1975 (age 48)Place of birth Newcastle, AustraliaHeight 1.73 m (5 ft 8 in)[1]Position(s) Right-back, right midfielderYouth career1992–1993 AISSenior career*Years Team Apps (Gls)1993–1994 Newcastle Breakers 1994 Adamstown Rosebud 9 (1)1994–1996 Wollongong Wolves 35 (1)1997–1999 KFC Uerdingen 05 27 (0)1...

 

Bagian dari seriZoroastrianismeFaravahardiyakini sebagai gambaran dari fravashi Topik utama Ahura Mazda Zarathustra aša (asha) / arta Malaikat dan iblis Amesha Spentas · Yazatas Ahuras · Daevas Angra Mainyu Kitab dan penyembahan Avesta Gatha · Yasna Vendidad · Visperad Yashts · Khordeh Avesta Ab-Zohr Selawat Ahuna Vairya Kuil Api Cerita dan legenda Dēnkard · Bundahišn Kitab Arda Viraf Kitab Jamasp Sanjan Sejarah dan kultur Zurvanism Kalender · Festival Pernikahan Eksatologi/Akhirat ...