Grad–Shafranov equation

The Grad–Shafranov equation (H. Grad and H. Rubin (1958); Vitalii Dmitrievich Shafranov (1966)) is the equilibrium equation in ideal magnetohydrodynamics (MHD) for a two dimensional plasma, for example the axisymmetric toroidal plasma in a tokamak. This equation takes the same form as the Hicks equation from fluid dynamics.[1] This equation is a two-dimensional, nonlinear, elliptic partial differential equation obtained from the reduction of the ideal MHD equations to two dimensions, often for the case of toroidal axisymmetry (the case relevant in a tokamak). Taking as the cylindrical coordinates, the flux function is governed by the equation,

where is the magnetic permeability, is the pressure, and the magnetic field and current are, respectively, given by

The nature of the equilibrium, whether it be a tokamak, reversed field pinch, etc. is largely determined by the choices of the two functions and as well as the boundary conditions.

Derivation (in Cartesian coordinates)

In the following, it is assumed that the system is 2-dimensional with as the invariant axis, i.e. produces 0 for any quantity. Then the magnetic field can be written in cartesian coordinates as or more compactly, where is the vector potential for the in-plane (x and y components) magnetic field. Note that based on this form for B we can see that A is constant along any given magnetic field line, since is everywhere perpendicular to B. (Also note that -A is the flux function mentioned above.)

Two dimensional, stationary, magnetic structures are described by the balance of pressure forces and magnetic forces, i.e.: where p is the plasma pressure and j is the electric current. It is known that p is a constant along any field line, (again since is everywhere perpendicular to B). Additionally, the two-dimensional assumption () means that the z- component of the left hand side must be zero, so the z-component of the magnetic force on the right hand side must also be zero. This means that , i.e. is parallel to .

The right hand side of the previous equation can be considered in two parts: where the subscript denotes the component in the plane perpendicular to the -axis. The component of the current in the above equation can be written in terms of the one-dimensional vector potential as

The in plane field is and using Maxwell–Ampère's equation, the in plane current is given by

In order for this vector to be parallel to as required, the vector must be perpendicular to , and must therefore, like , be a field-line invariant.

Rearranging the cross products above leads to and

These results can be substituted into the expression for to yield:

Since and are constants along a field line, and functions only of , hence and . Thus, factoring out and rearranging terms yields the Grad–Shafranov equation:

Derivation in contravariant representation

This derivation is only used for Tokamaks, but it can be enlightening. Using the definition of 'The Theory of Toroidally Confined Plasmas 1:3'(Roscoe White), Writing by contravariant basis :

we have :

then force balance equation:

Working out, we have:

References

Further reading

  • Grad, H., and Rubin, H. (1958) Hydromagnetic Equilibria and Force-Free Fields Archived 2023-06-21 at the Wayback Machine. Proceedings of the 2nd UN Conf. on the Peaceful Uses of Atomic Energy, Vol. 31, Geneva: IAEA p. 190.
  • Shafranov, V.D. (1966) Plasma equilibrium in a magnetic field, Reviews of Plasma Physics, Vol. 2, New York: Consultants Bureau, p. 103.
  • Woods, Leslie C. (2004) Physics of plasmas, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, chapter 2.5.4
  • Haverkort, J.W. (2009) Axisymmetric Ideal MHD Tokamak Equilibria. Notes about the Grad–Shafranov equation, selected aspects of the equation and its analytical solutions.
  • Haverkort, J.W. (2009) Axisymmetric Ideal MHD equilibria with Toroidal Flow. Incorporation of toroidal flow, relation to kinetic and two-fluid models, and discussion of specific analytical solutions.

Read other articles:

Katedral Butare Keuskupan Butare adalah sebuah wilayah gerejawi atau keuskupan dari Gereja Katolik Roma di Rwanda. Keuskupan tersebut didirikan pada 11 September 1961 sebagai Keuskupan Astrida oleh Paus Yohanes XXIII, dan kemudian berganti nama menjadi Keuskupan Butare pada 12 November 1963 oleh Paus Paulus VI. Keuskupan tersebut adalah sebuah suffragan dari Keuskupan Agung Kigali. Philippe Rukamba diangkat menjadi Uskup Butare oleh Paus Yohanes Paulus II pada 2 Januari 1997. Daftar uskup But...

 

 

Major river in Central Europe For other uses, see Elbe (disambiguation). Not to be confused with the island of Elba. ElbeElveThe Elbe (Labe) near Děčín, Czech RepublicThe Elbe drainage basinNative nameElbe (German)Labe (Czech)Ilv, Elv (Low German)Łobjo (Sorbian languages)LocationCountriesCzech RepublicGermanyRegions (CZ)Hradec KrálovéPardubiceCentral BohemiaÚstí nad LabemStates (DE)SaxonySaxony-AnhaltBrandenburgLower SaxonyMecklenburg-Western PomeraniaHamburgSchles...

 

 

В Википедии есть статьи о других людях с фамилиями Монро, Мортенсон и Бейкер. Мэрилин Монроангл. Marilyn Monroe Мэрилин Монро в июне 1953 года Имя при рождении Норма Джин Мортенсон Дата рождения 1 июня 1926(1926-06-01) Место рождения Лос-Анджелес, Калифорния, США[1] Дата смер...

American four star Army general (ret. in 2019) Vincent K. BrooksGeneral Vincent K. BrooksBorn (1958-10-24) October 24, 1958 (age 65)Anchorage, Alaska, U.S.AllegianceUnited StatesService/branchUnited States ArmyYears of service1980–2019RankGeneralCommands heldUnited States Forces KoreaUnited Nations CommandROK-U.S. Combined Forces CommandUnited States Army PacificThird Army1st Infantry Division1st Cavalry Division1st Brigade Combat Team, 3rd Infantry Division2nd Battalion, 9th Infa...

 

 

Duta Besar Duta besar Amerika Serikat untuk AfganistanSegel Kementerian Dalam Negeri Amerika SerikatPetahanaJohn R. Basssejak 12 Desember 2017Dicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat SenatPejabat perdanaWilliam H. Hornibrooksebagai Duta Luar Biasa dan Menteri Berkuasa PenuhDibentuk4 Mei 1935Situs webaf.usembassy.gov Kedubes AS di Kabul, 2010 Duta Besar Amerika Serikat untuk Afganistan adalah perwakilan resmi Presiden Amerika Serikat untuk kepala negara A...

 

 

Major League Baseball season Major League Baseball team season 2008 St. Louis CardinalsLeagueNational LeagueDivisionCentralBallparkBusch StadiumCitySt. Louis, MissouriRecord86–76 (.531)Divisional place4thOwnersWilliam DeWitt, Jr., Fred HanserGeneral managersJohn MozeliakManagersTony La RussaTelevisionFSN Midwest(Dan McLaughlin, Al Hrabosky)KSDK (NBC 5)(Jay Randolph, Rick Horton)RadioKTRS(Mike Shannon, John Rooney) ← 2007 Seasons 2009 → The St. Louis Cardinals' 200...

Diving in water-filled caves A cave diver running a reel with guide line into the overhead environment Cave-diving is underwater diving in water-filled caves. It may be done as an extreme sport, a way of exploring flooded caves for scientific investigation, or for the search for and recovery of divers or, as in the 2018 Thai cave rescue, other cave users. The equipment used varies depending on the circumstances, and ranges from breath hold to surface supplied, but almost all cave-diving is d...

 

 

Hospital in Gauteng, South AfricaTransvaal Memorial Hospital for ChildrenTransvaal Provincial AdministrationGeographyLocationBraamfontein, Johannesburg, Gauteng, South AfricaOrganisationCare systemPublicTypeSpecialistServicesSpecialityTeachingHistoryOpened1923Closed1978LinksListsHospitals in South Africa The Transvaal Memorial Hospital for Children, based in Johannesburg, was the first dedicated children's hospital in South Africa when it opened in 1923. The hospital would remain open until ...

 

 

Swedish politician (born 1959) Alice Åström Alice Åström (born 1959) is a Swedish Left Party politician. She was a member of the Riksdag from 1994 to 2010.[1] References ^ Alice Åström avgår som vice partiledare (in Swedish). Vänsterpartiet Jönköpings län. 4 February 2011. Retrieved 1 February 2023. External links Alice Åström at the Riksdag website (in Swedish) vteMembers of the Riksdagvte← Members of the Riksdag, 1998–2002 → Speaker: Birgitta Dahl (S) First Deputy...

Pattada PatàdaKomuneComune di PattadaLokasi Pattada di Provinsi SassariNegaraItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaAngelo SiniLuas • Total164,88 km2 (63,66 sq mi)Ketinggian794 m (2,605 ft)Populasi (2016) • Total3,084[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07016Kode area telepon079Situs webhttp://www.comune.pattada.ss.it Pattada (bahasa Sardinia: Patàda) a...

 

 

class=notpageimage| Location of Jardines del Rey in Cuba Jardines del Rey causeway entrance Jardines del Rey (English: Gardens of the King) is an archipelago off the northern coast of Cuba, in the northern parts of the provinces of Ciego de Ávila and Camagüey. Overview Jardines del Rey developed on the coral reef system that lines Cuba's shore, between the Atlantic Ocean, the Bay of Buena Vista and Bay of Jiguey. The reef, part of the Sabana-Camagüey Archipelago, extends for two hundred ki...

 

 

1962–1967 British protectorate in southwest Arabia For the history of the Federation, see History of Yemen. Federation of South Arabiaاتحاد الجنوب العربيIttiḥād al-Janūb al-‘Arabī1962–1967 Flag Emblem StatusBritish protectorateCapitalAdenCommon languagesArabicEnglishSouth ArabianGovernmentFederal monarchyHigh Commissioner • 1963 Sir Charles Johnston• 1963–1964 Sir Kennedy Trevaskis• 1964–1967 Sir Richard Turnbull• 1967 Sir ...

Algorithm that employs a degree of randomness as part of its logic or procedure Part of a series onProbabilisticdata structures Bloom filter Count sketch Count–min sketch Quotient filter Skip list Random trees Random binary tree Treap Rapidly exploring random tree Related Randomized algorithm HyperLogLog vte Randomized algorithms redirects here. Not to be confused with Algorithmic randomness. A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or ...

 

 

For the radio station in Harrisonburg, Virginia, see WHBG. Television station in Harrisburg, PennsylvaniaWHBG TV 20CityHarrisburg, PennsylvaniaChannelsDigital: 20HistoryCall sign meaningHarrisburg AbbreviationLinksWebsiteOfficial Website The Harrisburg Broadcast Network, branded as WHBG TV 20, is a Public, educational, and government access (PEG) cable TV channel in the city of Harrisburg, Pennsylvania. Despite its call sign, it is not an FCC-sanctioned terrestrial television station. It is s...

 

 

1969 Broadway musical For other uses, see Dear World (disambiguation). Dear WorldOriginal cast recordingMusicJerry HermanLyricsJerry HermanBookJerome Lawrence and Robert E. LeeBasisJean Giraudoux's play The Madwoman of ChaillotProductions1969 Broadway 2013 London 2023 Encores! Dear World is a musical with music and lyrics by Jerry Herman and book by Jerome Lawrence and Robert E. Lee. With its opening, Herman became the first composer-lyricist in history to have three productions running simul...

日本通信TiKiモバイル BM-SW キャリア 日本通信TiKiモバイル 製造 華為技術 発売日 2010年12月25日 概要 OS Android 2.2.1 Froyo CPU Qualcomm MSM7225 528MHz 音声通信方式 FOMA(W-CDMA)GSM(850/1700/1900/2100MHz(W-CDMA)850/900/1800/1900MHz(GSM)) データ通信方式 HSDPAGPRSEDGEIEEE 802.11b/g/n(Wi-Fi) 形状 ストレート・タッチパネル サイズ 54.8×104×13.5mm 質量 約100 g 連続通話時間 9時間 連続待受時間 288時間 外部メ�...

 

 

British artist (1870–1938) Title page of Brock's edition of Emma, 1909 'The Old Chevalier House, Fore Street, Exeter' by Charles Edmund Brock, about 1920–1930. This pencil and watercolour on paper depicts The Old Chevalier House Inn in Exeter from the Royal Albert Memorial Museum's collection (58/1999/2) Charles Edmund Brock (5 February 1870 – 28 February 1938) was a widely published English painter, line artist and book illustrator, who signed most of his work C. E. Brock. He was the e...

 

 

Artistic period from the 1860s–1970s This article is about art produced from the 1860s to the 1970s. For art produced from the 1940s to the present, see contemporary art. Modern artVincent van Gogh, Country Road in Provence by Night, 1889, May 1890, Kröller-Müller MuseumPaul Cézanne, The Large Bathers, 1898–1905 History of art Periods and movements Prehistoric Ancient Medieval Pre-Romanesque Romanesque Gothic Renaissance Mannerism Baroque Rococo Neoclassicism Revivalism Romanticism Rea...

田島ヶ原サクラソウ自生地の碑 サクラソウ自生地のサクラソウ 自生地内のサクラソウ群生の様子 田島ヶ原(たじまがはら)および田島ヶ原サクラソウ自生地(たじまがはらサクラソウじせいち)は、埼玉県さいたま市桜区にある、国の特別天然記念物に指定されたサクラソウの自生地である。さくら草公園が整備されている。 概要 田島ヶ原サクラソウ自生地はさいた...

 

 

Julien AlfredJulien Alfred dopo la vittoria dei 60 m piani ai Mondiali indoor 2024.Nazionalità Saint Lucia Atletica leggera SpecialitàVelocità Società Texas Longhorns Record 60 m 694 (indoor - 2023) 100 m 1072 (2024) 200 m 2186 (2024) 200 m 2201 (indoor - 2023) 300 m 3736 (indoor - 2022) 400 m 5829 (2017) 4×100 m 4234 (2022) 4×400 m 3'2335 (2022) 4×400 m 3'2567 (indoor - 2023) CarrieraSocietà 2018- Texas Longhorns Nazionale Saint Lucia Palmarès Competizione Ori Argenti Bronzi Gi...