Gold(III) hydroxide, gold trihydroxide, or gold hydroxide is an inorganic compound, a hydroxide of gold, with formula Au(OH)3. It is also called auric acid with formula H3AuO3. It is easily dehydrated above 140 °C to gold(III) oxide. Salts of auric acid are termed aurates.
Gold hydroxide is a product of electrochemical corrosion of gold metalization subjected to moisture and positive electric potential; it is one of the corrosion failure modes of microelectronics. Voluminous gold hydroxide is produced from gold metalization; after the layer grows thick it may spall, and the conductive particles may cause short circuits or leakage paths. The decreased thickness of the gold layer may also lead to an increase in its electrical resistance, which can also lead to electrical failure.[8]
Gold(III) hydroxide reacts with ammonia to produce fulminating gold, an explosive compound.[10]
It also reacts with an alkali to produce aurates(AuO2−).[11]
References
^Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 4–59, ISBN0-8493-0594-2
^Figuier, L (April 1848). "ART. XXIV.--OBSERVATIONS ON THE PREPARATION OF THE OXIDE OF GOLD, (AURIC ACID.)". American Journal of Pharmacy. 19. Philadelphia: 102. ProQuest89661353.
^Diaz-Morales, Oscar; Calle-Vallejo, Federico; de Munck, Casper; Koper, Marc T. M. (2013). "Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism". Chemical Science. 4 (6): 2334. doi:10.1039/C3SC50301A.
^"CID 11536100 - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 26 October 2006. Identification and Related Records. Retrieved 6 October 2011.
^Perrin, D. D., ed. (1982) [1969]. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution. IUPAC Chemical Data (2nd ed.). Oxford: Pergamon (published 1984). Entry 87. ISBN0-08-029214-3. LCCN82-16524.
^"C&L Inventory". www.echa.europa.eu. Retrieved 13 December 2021.