Gerhard Gentzen

Gerhard Gentzen
Gerhard Gentzen in Prague, 1945.
Born(1909-11-24)24 November 1909
Died4 August 1945(1945-08-04) (aged 35)
Cause of deathStarvation
NationalityGerman
Alma materUniversity of Göttingen
Known forGentzen's consistency proof
Gentzen's Hauptsatz
Gentzen's natural deduction calculus
Gentzen's sequent calculus
Gödel–Gentzen translation
Analytic proof
Ordinal analysis
Proof-theoretic semantics
Scientific career
FieldsMathematics
Doctoral advisorPaul Bernays

Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died of starvation in a Czech prison camp in Prague in 1945.

Life and career

Gentzen was a student of Paul Bernays at the University of Göttingen. Bernays was fired as "non-Aryan" in April 1933 and therefore Hermann Weyl formally acted as his supervisor. Gentzen joined the Sturmabteilung in November 1933, although he was by no means compelled to do so.[1] Nevertheless, he kept in contact with Bernays until the beginning of the Second World War. In 1935, he corresponded with Abraham Fraenkel in Jerusalem and was implicated by the Nazi teachers' union as one who "keeps contacts to the Chosen People." In 1935 and 1936, Hermann Weyl, head of the Göttingen mathematics department in 1933 until his resignation under Nazi pressure, made strong efforts to bring him to the Institute for Advanced Study in Princeton.

Between November 1935 and 1939 he was an assistant of David Hilbert in Göttingen. Gentzen joined the Nazi Party in 1937. In April 1939 Gentzen swore the oath of loyalty to Adolf Hitler as part of his academic appointment.[2] From 1943 he was a teacher at the German Charles-Ferdinand University of Prague.[3] Under a contract from the SS, Gentzen worked for the V-2 project.[4]

Gentzen was arrested during the citizens uprising against the occupying German forces on 5 May 1945. He, along with the rest of the staff of the German University in Prague were detained in a Soviet prison camp, where he died of starvation on 4 August 1945.[5][6]

Work

Gentzen's main work was on the foundations of mathematics, in proof theory, specifically natural deduction and the sequent calculus. His cut-elimination theorem is the cornerstone of proof-theoretic semantics, and some philosophical remarks in his "Investigations into Logical Deduction", together with Ludwig Wittgenstein's later work, constitute the starting point for inferential role semantics.

One of Gentzen's papers had a second publication in the ideological Deutsche Mathematik that was founded by Ludwig Bieberbach who promoted "Aryan" mathematics.[7]

Gentzen proved the consistency of the Peano axioms in a paper published in 1936.[8] In his Habilitationsschrift, finished in 1939, he determined the proof-theoretical strength of Peano arithmetic. This was done by a direct proof of the unprovability of the principle of transfinite induction, used in his 1936 proof of consistency, within Peano arithmetic. The principle can, however, be expressed in arithmetic, so that a direct proof of Gödel's incompleteness theorem followed. Gödel used a coding procedure to construct an unprovable formula of arithmetic. Gentzen's proof was published in 1943 and marked the beginning of ordinal proof theory.

Publications

  • "Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen". Mathematische Annalen. 107 (2): 329–350. 1932. doi:10.1007/bf01448897. S2CID 119534269.
  • "Untersuchungen über das logische Schließen. I". Mathematische Zeitschrift. 39 (2): 176–210. 1935. doi:10.1007/bf01201353. S2CID 121546341.
  • "Untersuchungen über das logische Schließen. II". Mathematische Zeitschrift. 39 (3): 405–431. 1935. doi:10.1007/bf01201363. S2CID 186239837.
  • "Die Widerspruchsfreiheit der Stufenlogik". Mathematische Zeitschrift. 41: 357–366. 1936a. doi:10.1007/BF01180425. S2CID 122979277.
  • "Die Widerspruchsfreiheit der reinen Zahlentheorie". Mathematische Annalen. 112: 493–565. 1936b. doi:10.1007/BF01565428. S2CID 122719892.
  • "Der Unendlichkeitsbegriff in der Mathematik. Vortrag, gehalten in Münster am 27. Juni 1936 am Institut von Heinrich Scholz" [Lecture held in Münster on 27 June 1936 at the institute of Heinrich Scholz]. Semester-Berichte Münster (in German): 65–80. 1936–1937.
  • "Unendlichkeitsbegriff und Widerspruchsfreiheit der Mathematik". Actualités scientifiques et industrielles. 535: 201–205. 1937.
  • "Die gegenwärtige Lage in der mathematischen Grundlagenforschung". Deutsche Mathematik. 3: 255–268. 1938.[9]
  • "Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie". Forschungen zur Logik und zur Grundlegung der Exakten Wissenschaften. 4: 19–44. 1938.[9]
  • "Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie". Mathematische Annalen. 119: 140–161. 1943. doi:10.1007/BF01564760. S2CID 120335524.

Posthumous

See also

Notes

References

Read other articles:

Partai Revolusi Chama Cha Mapinduzicode: sw is deprecated   (Swahili)SingkatanCCMKetua umumSamia SuluhuSekretaris JenderalDaniel ChongoloJuru bicaraSophia MjemaWakil KetuaAbdurahman Omar KinanaPendiriJulius NyerereAboud JumbeDibentuk5 Februari 1977 (1977-02-05)Lambang pemiluCangkul dan paluBendera Chama Cha Mapinduzi (CCM; Swahili: terj. har. 'Partai Revolusi') adalah sebuah partai pemerintahan dominan di Tanzania dan partai pemerintahan terlama kedua di Afrika, hanya...

 

 

Dahshur - Piramida Merah - Polisi turis di atas unta Dahshur[transliteration 1] (dalam bahasa Inggris sering disebut Dashur; bahasa Arab: دهشور Dahšūr  pelafalan [dɑhˈʃuːɾ], bahasa Koptik: ⲧⲁϩϭⲟⲩⲣ Dahchur[1]) merupakan sebuah nekropolis kerajaan yang terletak di gurun bagian barat sungai Nil sekitar 40 kilometer (25 mi) selatan Kairo. Wilayah ini dikenal memiliki beberapa piramida, dua di antaranya adalah yang tertua, terbesar ...

 

 

The Love Gov beralih ke halaman ini. Untuk mantan Gubernur Alabama yang juga dijuluki The Love Gov, lihat Robert J. Bentley. Untuk pemain basket, lihat Mark Sanford (pemain basket). Untuk politikus Dakota Utara, lihat Mark Sanford (politikus Dakota Utara). Mark Sanford Gubernur Carolina Selatan ke-115Masa jabatan15 Januari 2003 – 12 Januari 2011WakilAndré Bauer PendahuluJim HodgesPenggantiNikki HaleyAnggota Dewan Perwakilan Rakyat A.S.dari dapil 1 South CarolinaMasa ja...

احتلال كوريتسا جزء من حرب البلقان الأولى    التاريخ 20 ديسمبر 1912  الموقع كورتشي  40°36′50″N 20°46′40″E / 40.614025°N 20.777777777778°E / 40.614025; 20.777777777778   المتحاربون  الدولة العثمانية  مملكة اليونان تعديل مصدري - تعديل   عنتمعارك حرب البلقان الأولىالجبهة الب...

 

 

1949 film by Nicholas Ray A Woman's SecretTheatrical release posterDirected byNicholas RayScreenplay byHerman J. MankiewiczBased onMortgage on Life1946 novelby Vicki BaumProduced byHerman J. MankiewiczStarringMaureen O'HaraMelvyn DouglasGloria GrahameCinematographyGeorge E. DiskantEdited bySherman ToddMusic byFriedrich HollaenderDistributed byRKO Radio PicturesRelease date February 7, 1949 (1949-02-07) (US)[1] Running time84 minutesCountryUnited StatesLanguageEnglis...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

EA-3887 Identifiers CAS Number 110913-97-8 3D model (JSmol) Interactive image InChI InChI=1S/C32H54N6O4.2BrH/c1-35(2)31(39)41-29-19-17-21-33-27(29)25-37(5,6)23-15-13-11-9-10-12-14-16-24-38(7,8)26-28-30(20-18-22-34-28)42-32(40)36(3)4;;/h17-22H,9-16,23-26H2,1-8H3;2*1H/q+2;;/p-2Key: DQBNOGPLNCQNRU-UHFFFAOYSA-L SMILES CN(C)C(=O)Oc1cccnc1C[N+](C)(C)CCCCCCCCCC[N+](C)(C)Cc2ncccc2OC(=O)N(C)C.[Br-].[Br-] Properties Chemical formula C32H54Br2N6O4 Molar mass 746.630 g·mol−1 Appearan...

 

 

Electronic component that exploits the electronic properties of semiconductor materials For information on semiconductor physics, see Semiconductor. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Semiconductor device – news · newspapers · books · scholar · JSTOR (July 2017) (Learn how and when to remove thi...

 

 

American politician Norma PaulusSuperintendent of Public Instruction of OregonIn officeOctober 1, 1990 – January 4, 1999GovernorNeil GoldschmidtBarbara RobertsJohn KitzhaberPreceded byJohn EricksonSucceeded byStan Bunn20th Secretary of State of OregonIn officeJanuary 3, 1977 – January 7, 1985GovernorRobert StraubVictor AtiyehPreceded byClay MyersSucceeded byBarbara Roberts Personal detailsBornNorma Jean Petersen(1933-03-13)March 13, 1933Belgrade, Nebraska, U.S.DiedFebrua...

Location of Essex County in New York Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) List of the National Register of Historic Places listings in Essex County, New York. This is intended to be a complete list of properties and districts listed on the National Register of Historic Places in Essex County, New York, United States. The locations of National Register properties and districts (at least...

 

 

American philosopher (born 1947) Nancy FraserFraser in 2008Born (1947-05-20) May 20, 1947 (age 77)Baltimore, Maryland, USEra20th-century philosophyRegionWestern philosophySchoolContinental philosophyCritical theoryFeminist philosophyPost-MarxismPost-structuralismInstitutionsThe New SchoolMain interestsPolitical philosophy Nancy Fraser (/ˈfreɪzər/; born May 20, 1947) is an American philosopher, critical theorist, feminist, and the Henry A. and Louise Loeb Professor of Political and Soc...

 

 

MugeunjiNama KoreaHangul묵은지 Alih AksaraMugeunjiMcCune–ReischauerMuk'eunji Mukeunji adalah salah satu jenis kimchi yang terbuat dari sawi putih.[1] Makanan ini didapat dari kimchi yang dibiarkan terfermentasi untuk jangka waktu yang panjang pada suhu yang rendah.[2] Setidaknya kimchi harus berumur enam bulan untuk dapat disebut sebagai mukeunji.[2] Ada pula yang menyebut bahwa mukeunji haruslah kimchi yang berumur lebih dari setahun.[3] Sejarah Sejarah m...

Questa voce o sezione sull'argomento edizioni di competizioni calcistiche non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento edizioni di competizioni calcistiche inglesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Second Division 1984-19...

 

 

Medical conditionPotassium-aggravated myotoniaOther namesPAM[1]This condition is inherited in an autosomal dominant manner myotonia figure.png Potassium-aggravated myotonia is a rare genetic disorder that affects skeletal muscle.[2] Beginning in childhood or adolescence, people with this condition experience bouts of sustained muscle tensing (myotonia) that prevent muscles from relaxing normally. Myotonia causes muscle stiffness, often painful, that worsens after exercise and ...

 

 

ColdrainIl gruppo in concerto nel 2017 Paese d'origine Giappone GenereAlternative metal[1]Post-hardcore[2][3]Metalcore[4][5] Periodo di attività musicale2007 – in attività EtichettaWarner Music Japan, VAP, Hopeless Records Studio7 Live5 Opere audiovisive8 Logo ufficiale Sito ufficiale Modifica dati su Wikidata · Manuale I Coldrain (コールドレイン?, Kōrudorein, stilizzato in coldrain) sono un gruppo musi...

German fairy tale For other uses, see Queen bee (disambiguation). The Queen BeeIllustration of the tale by Otto Ubbelohde.Folk taleNameThe Queen BeeAarne–Thompson groupingATU 554CountryGermanyPublished inGrimm's Fairy Tales The Queen Bee is a German fairy tale collected by the Brothers Grimm in Grimm's Fairy Tales (KHM 62). It is of Aarne-Thompson type 554 (The Grateful Animals).[1] Synopsis Two sons of a king went out to seek their fortunes, but fell into disorderly ways. The third...

 

 

日本でのアウトドアリビングの一例 ドイツのアウトドアリビングを持つ家 母屋から離れた庭の一角に東屋風の小さなリビングを設置したオーストラリアの例 日本の住宅事情でも視線を遮るアイテムの設置でアウトドアリビングを可能とした例。 アウトドアリビングとは、居間と隣接した庭やバルコニーなど、居間同様に生活空間として利用できるスペース。また、そ�...

 

 

2015年3月13日までの営業形態については「長野新幹線」をご覧ください。 北陸新幹線 北陸新幹線E7系電車(2020年8月、佐久平駅付近)基本情報国 日本所在地 群馬県、長野県、新潟県、富山県、石川県、福井県種類 高速鉄道(新幹線)起点 高崎駅終点 敦賀駅駅数 19駅開業 1997年10月1日(高崎駅 - 長野駅間)最終延伸 2024年3月16日(金沢駅 - 敦賀駅間)所有者 鉄道建設・�...

خريطة توضح أعداد المسيحيين اللاطائفيين في 2010   أكثر من 10 مليون   أكثر من 1 مليون مسيحية لا طائفية (بالإنجليزية: Nondenominational Christianity)‏ هُم المسيحيون الذين يصرحون بمسيحيتهم لكن يرفضون أن ينتموا إلى طائفة ويصنفون أيضاً كبروتستانت ويقولون أنهم مسيحيين بطريقتهم الخاصة م�...

 

 

1940 film The Man from NigerDirected byJacques de BaroncelliWritten byAlbert DieudonnéJoseph KesselAndré LegrandJean Paillard (books)StarringVictor FrancenJacques DumesnilAnnie DucauxCinematographyLéonce-Henri BurelEdited byJean SachaMusic byHenri TomasiProductioncompanySPFLHDistributed byLes Films BodaloRelease date 27 January 1940 (1940-01-27) Running time102 minutesCountryFranceLanguageFrench The Man from Niger or Forbidden Love (French: L'homme du Niger) is a 1940 French...