Generalized Lotka–Volterra equation

The generalized Lotka–Volterra equations are a set of equations which are more general than either the competitive or predator–prey examples of Lotka–Volterra types.[1][2] They can be used to model direct competition and trophic relationships between an arbitrary number of species. Their dynamics can be analysed analytically to some extent. This makes them useful as a theoretical tool for modeling food webs. However, they lack features of other ecological models such as predator preference and nonlinear functional responses, and they cannot be used to model mutualism without allowing indefinite population growth.

The generalised Lotka-Volterra equations model the dynamics of the populations of biological species. Together, these populations can be considered as a vector . They are a set of ordinary differential equations given by

where the vector is given by

where is a vector and is a matrix known as the interaction matrix.[3]

Meaning of parameters

The generalised Lotka-Volterra equations can represent competition and predation, depending on the values of the parameters, as described below. "Generalized" means that all the combinations of pairs of signs for both species (−/−,−/+,+/-, +/+) are possible. They are less suitable for describing mutualism.

The values of are the intrinsic birth or death rates of the species. A positive value for means that species i is able to reproduce in the absence of any other species (for instance, because it is a plant that is wind pollinated), whereas a negative value means that its population will decline unless the appropriate other species are present (e.g. a herbivore that cannot survive without plants to eat, or a predator that cannot persist without its prey).

The values of the elements of the interaction matrix represent the relationships between the species. The value of represents the effect that species j has upon species i. The effect is proportional to the populations of both species, as well as to the value of . Thus, if both and are negative then the two species are said to be in direct competition with one another, since they each have a direct negative effect on the other's population. If is positive but is negative then species i is considered to be a predator (or parasite) on species j, since i's population grows at j's expense.

Positive values for both and would be considered mutualism. However, this is not often used in practice, because it can make it possible for both species' populations to grow indefinitely.

Indirect negative and positive effects are also possible. For example, if two predators eat the same prey then they compete indirectly, even though they might not have a direct competition term in the community matrix.

The diagonal terms are usually taken to be negative (i.e. species i's population has a negative effect on itself). This self-limitation prevents populations from growing indefinitely.

Dynamics and solutions

The generalised Lotka-Volterra equations are capable of a wide variety of dynamics, including limit cycles and chaos as well as point attractors (see Hofbauer and Sigmund[2]). As with any set of ODEs, fixed points can be found by setting to 0 for all i, which gives, if no species is extinct, i.e., if for all ,

This may or may not have positive values for all the ; if it does not, then there is no stable attractor for which the populations of all species are positive. If there is a fixed point with all positive populations the Jacobian matrix in a neighbourhood of the fixed point is given by . This matrix is known as the community matrix and its eigenvalues determine the stability of the fixed point .[3] The fixed point may or may not be stable. If the fixed point is unstable then there may or may not be a periodic or chaotic attractor for which all the populations remain positive. In either case there can also be attractors for which some of the populations are zero and others are positive.

is always a fixed point, corresponding to the absence of all species. For species, a complete classification of this dynamics, for all sign patterns of above coefficients, is available,[4] which is based upon equivalence to the 3-type replicator equation.

Applications for single trophic communities

In the case of a single trophic community, the trophic level below the one of the community (e.g. plants for a community of herbivore species), corresponding to the food required for individuals of a species i to thrive, is modeled through a parameter Ki known as the carrying capacity. E.g. suppose a mixture of crops involving S species. In this case can be thus written in terms of a non-dimensional interaction coefficient :[5] .

Quantitative prediction of species yields from monoculture and biculture experiments

A straightforward procedure to get the set of model parameters is to perform, until the equilibrium state is attained:  a) the S single species or monoculture experiments, and from each of them to estimate the carrying capacities as the yield of the species i in monoculture (the superscript ‘ex’ is to emphasize that this is an experimentally measured quantity a); b) the S´(S-1)/2 pairwise experiments producing the biculture yields, and (the subscripts i(j) and j(i) stand for the yield of species i in presence of species and vice versa).  We then can obtain and , as:[6]       Using this procedure it was observed that the Generalized Lotka–Volterra equations can predict with reasonable accuracy most of the species yields in mixtures of S >2 species for the majority of a set of 33 experimental treatments acrossdifferent taxa (algae, plants, protozoa, etc.).[6]

Early warnings of species crashes

The vulnerability of species richness to several factors like, climate change, habitat fragmentation, resource exploitation, etc., poses a challenge to conservation biologists and agencies working to sustain the ecosystem services. Hence, there is a clear need for early warning indicators of species loss generated from empirical data. 

A recently proposed early warning indicator of such population crashes uses effective estimation of the Lotka-Volterra interaction coefficients . The idea is that such coefficients can be obtained from spatial distributions of individuals of the different species through Maximum Entropy. This method was tested against the data collected for trees by the Barro Colorado Island Research Station, comprising eight censuses performed every 5 years from 1981 to 2015. The main finding was that for those tree species that suffered steep population declines (of at least 50%), across the eight tree censuses, the drop of is always steeper and occurs before the drop of the corresponding species abundance Ni .[7]  Indeed, such sharp declines in occur between 5 and 15 years in advance than comparable declines for Ni, and thus they serve as early warnings of impending population busts.

See also

References

  1. ^ Metz, J. A. J.; Geritz, S. A. H; Meszéna, G.; Jacobs, F. J. A.; Van Heerwaarden, J. S. (1996). "Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction." (PDF). In van Strien SJ, Verduyn Lunel SM (ed.). Stochastic and Spatial Structures of Dynamical Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen) (book) (IIASA Working Paper WP-95-099. ed.). North Holland, Amsterdam: Elsevier Science Pub Co. pp. 183–231. ISBN 0-444-85809-1. Retrieved 20 September 2009.
  2. ^ a b Hofbauer, J.; Sigmund, K. (1998). Evolutionary Games and Population Dynamics (book).
  3. ^ a b Berlow, E. L.; Neutel, A.-M.; Cohen, J. E.; De Ruiter, P. C.; Ebenman, B.; Emmerson, M.; Fox, J. W.; Jansen, V. A. A.; Jones, J. I.; Kokkoris, G. D.; Logofet, D. O.; McKane, A. J.; Montoya, J. M; Petchey, O. (2004). "Interaction Strengths in Food Webs: Issues and Opportunities". Journal of Animal Ecology. 73 (3): 585–598. Bibcode:2004JAnEc..73..585B. doi:10.1111/j.0021-8790.2004.00833.x. JSTOR 3505669.
  4. ^ Bomze, I.M., Lotka–Volterra equation and replicator dynamics: a two-dimensional classification. Biological Cybernetics 48, 201–211 (1983); Bomze, I.M., Lotka–Volterra equation and replicator dynamics: new issues in classification. Biological Cybernetics 72, 447–453 (1995).
  5. ^ Fort, Hugo (2020), Ecological Modelling and Ecophysics, IOP Publishing, doi:10.1088/978-0-7503-2432-8ch0, ISBN 978-0-7503-2432-8, S2CID 242621928, retrieved 17 May 2021
  6. ^ a b Fort, Hugo (2018). "On predicting species yields in multispecies communities: Quantifying the accuracy of the linear Lotka-Volterra generalized model". Ecological Modelling. 387: 154–162. doi:10.1016/j.ecolmodel.2018.09.009. ISSN 0304-3800. S2CID 91195785.
  7. ^ Fort, Hugo; Grigera, Tomás S. (2021). "A new early warning indicator of tree species crashes from effective intraspecific interactions in tropical forests". Ecological Indicators. 125: 107506. doi:10.1016/j.ecolind.2021.107506. hdl:20.500.12008/33250. ISSN 1470-160X.

Read other articles:

Patung dada perunggu Johnson karya Jacob Epstein, 1942 Hewlett Johnson (25 Januari 1874 – 22 Oktober 1966) adalah seorang pendeta Inggris dari Gereja Inggris. Ia menjadi Dekan Manchester dan kemudian Dekan Canterbury, dimana ia dijuluki Dekan Merah dari Canterbury karena dukungannya terhadap Uni Soviet dan sekutu-sekutunya. Pranala luar Hewlett Johnson archive at marxists.org Kliping surat kabar tentang Hewlett Johnson di Arsip Pers Abad ke-20 dari Perpustakaan Ekonomi Nasiona...

 

 

Bilderberg Hotel Wientjes, Zwolle Bilderberg adalah jaringan hotel dan restoran yang berdiri di Belanda. Saat ini Bilderberg mengoperasikan 20 hotel di Belanda. Namanya menjadi asal usul nama Bilderberg Group yang mengadakan pertemuan pertamanya di Bilderberg Hotel di Oosterbeek. Hotel Hotel-hotel ternama milik jaringan ini adalah: Bilderberg Hotel, Oosterbeek Doorwerth Castle, Doorwerth Restoran ternama milik jaringan ini adalah: De Kromme Dissel, Heelsum De Kersentuin, di Bilderberg Garden ...

 

 

Indian basketball league Indian National Basketball League (INBL)SportBasketballFounded2021; 3 years ago (2021)CEOParveen Batish Rupinder BrarMottoDONE. HIDING.No. of teams6CountryIndiaMost recentchampion(s)Chennai Heat (1st title) (2022)TV partner(s)YouTube FanCodeOfficial websitehttps://inbl.basketball/ The Indian National Basketball League (INBL) is the open-entry off-season developmental basketball league in India, organized and by the HAI and Basketball Federation of In...

Kementerian Agama Republik IndonesiaLambang Kementerian AgamaBendera Kementerian AgamaGambaran umumDibentuk3 Januari 1946; 78 tahun lalu (1946-01-03)Dasar hukum pendirianPeraturan Presiden Nomor 12 Tahun 2023SloganIkhlas BeramalPegawai235.343 per 2020Alokasi APBNRp67,1 Triliun Susunan organisasiMenteriYaqut Cholil QoumasWakil MenteriSaiful Rahmat DasukiSekretaris JenderalNizar AliInspektur JenderalFaisal Ali Hasyim Direktur JenderalPendidikan IslamMuhammad Ali RamdhaniPenyelenggaraan Haj...

 

 

Canadian ice hockey player, executive (b. 1969) For the Australian author and journalist, see Brendan Shanahan (author). Ice hockey player Brendan Shanahan Hockey Hall of Fame, 2013 Shanahan in 2020Born (1969-01-23) January 23, 1969 (age 55)Mimico, Ontario, CanadaHeight 6 ft 3 in (191 cm)Weight 220 lb (100 kg; 15 st 10 lb)Position Left wingShot RightPlayed for New Jersey DevilsSt. Louis BluesDüsseldorfer EGHartford WhalersDetroit Red WingsNew York Rang...

 

 

Aeroméxico IATA ICAO Kode panggil AM AMX AEROMEXICO Didirikan14 September 1934 (sebagai Aeronaves de México S.A. de C.V.)Mulai beroperasi14 September 19341 Oktober 1988 (sebagai Aerovias de México S.A. de C.V.)PenghubungBandara Kota MeksikoKota fokusBandara GuadalajaraBandara MonterreyProgram penumpang setiaClub PremierLounge bandaraSalón PremierAliansiSkyTeamArmada88Tujuan89SloganMexico's Global AirlinePerusahaan indukGrupo AeroméxicoKantor pusatKota Meksiko, MeksikoTokoh utamaAndrés C...

LEGO Star Wars: Il risveglio della ForzavideogiocoTitolo originaleLego Star Wars: The Force Awakens PiattaformaMicrosoft Windows, Nintendo 3DS, macOS, PlayStation 3, PlayStation 4, PlayStation Vita, Wii U, Xbox 360, Xbox One, iOS, Android Data di pubblicazione 28 giugno 2016 28 giugno 2016 28 giugno 2016OS X: 30 giugno 2016Android: 27 luglio 2016 GenereAzione, avventura OrigineRegno Unito SviluppoTraveller's Tales PubblicazioneWarner Bros. Interacti...

 

 

Policy opposing discrimination against non-Malay populations This article is part of a series on thePolitics ofMalaysia Head of State Yang di-Pertuan Agong Ibrahim Iskandar Conference of Rulers Legislature Parliament of Malaysia 15th Parliament Senate (Dewan Negara) President Wan Junaidi Tuanku Jaafar House of Representatives (Dewan Rakyat) Speaker Johari Abdul Leader of the Government Anwar Ibrahim Leader of the Opposition Hamzah Zainudin Executive Cabinet Prime Minister Anwar Ibrahim Civil ...

 

 

Que mon cœur lâche Logo de la pochette du single. Single de Mylène Farmerextrait de l'album Dance Remixes Sortie 16 novembre 1992 Durée 4:05 Genre Pop, Variété française Format 45 tours, Maxi 45 tours, CD Single, Cassette Auteur Mylène Farmer Compositeur Laurent Boutonnat Label Polydor, Toutankhamon Singles de Mylène Farmer Beyond My Control(1992) XXL(1995)modifier Que mon cœur lâche est une chanson de Mylène Farmer, sortie en single le 16 novembre 1992. Ce titre, dont ...

Artikel ini bukan mengenai Gunung Bromo. Bahasa Oromo Afaan Oromoo Dituturkan diEthiopia, KenyaWilayahOromiaEtnisOromoPenutur34 juta penduduk di Ethiopia (2015)[1]500 di Kenya (sensus 2015), 42 di Somalia (sensus 2015)[1] Rincian data penutur Jumlah penutur beserta (jika ada) metode pengambilan, jenis, tanggal, dan tempat.[2] 24.000.000 (2007, Bahasa ibu)36.000.000 ±1000000 Rumpun bahasaAfroasiatik KushitikDataran Rendah TimurOromoidOromo Sistem penulisanLat...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) This list divides the world using the seven-continent model, with islands grouped into adjacent continents. The continents are: إفريقيا آسيا أوروبا أمريكا الشمالية ...

 

 

Peta infrastruktur dan tata guna lahan di Komune Bussière-Galant.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiBussière-Galant merupakan sebuah komune di departemen Haute-Vienne di Prancis. Lihat pula Komune di departemen Haute-Vienne Referensi INSEE lbsKomune di departemen Haute-Vienne Aixe-sur-Vienne Ambazac Arnac-la-Poste Augne Aureil Azat-le-Ris Balledent ...

Cet article est une ébauche concernant le Guyana. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Carte des colonies néerlandaises de la Côte Sauvage (Amérique du Sud) autour de 1800. De gauche à droite : Pomeroon, Essequibo, Démérara et Berbice. Berbice (/bɛʁ.bis/) était une ancienne colonie néerlandaise située le long du fleuve Berbice sur la Côte Sauvage sud-américaine, dans l'actuel Guyana...

 

 

Conference between nations in the Commonwealth 1926 Imperial ConferenceThe King (front, centre) with his prime ministers. Standing (left to right): W.S. Monroe (Newfoundland), Gordon Coates (New Zealand), Stanley Bruce (Australia), J. B. M. Hertzog (Union of South Africa), W. T. Cosgrave (Irish Free State). Seated: Stanley Baldwin (United Kingdom), King George V, William Mackenzie King (Canada).Host country United KingdomDate19 October 1926–23 November 1926CitiesLondonHeads of State or Gove...

 

 

منتخب سويسرا لهوكي الجليد للناشئين البلد سويسرا  ألوان الفريق       رمز IIHF SUI مشاركة دولية  الاتحاد السوفيتي 18 – 1 سويسرا  (كورنوال (أونتاريو)، أونتاريو، كندا؛ 22 ديسمبر 1977) أكبر فوز  سويسرا 20 – 7 النمسا  (سابورو، اليابان؛ 24 مارس 1985) أكبر هزيمة  فنلندا 19 – 1...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2016) سباق الأومنيوم للسيدات في بطولة الدراجات على المضمار الاختصاص سباق الدراجات على المضمار المنظَم الاتحاد ...

 

 

ДеревняЛедухи 56°54′29″ с. ш. 53°50′30″ в. д.HGЯO Страна  Россия Субъект Федерации Удмуртская Республика Муниципальный округ Воткинский История и география Высота центра 115 м Население Население ↗11[1] человек (2012) Цифровые идентификаторы Почтовый индекс 4274...

 

 

  لمعانٍ أخرى، طالع الحميراء (توضيح). الحميراء (محلة) تقسيم إداري البلد  اليمن المحافظة محافظة إب المديرية مديرية السبرة العزلة عزلة عينان القرية قرية غضار السكان التعداد السكاني 2004 السكان 55   • الذكور 26   • الإناث 29   • عدد الأسر 4   • عدد المساكن 4 معلومات أ...

Airport in NhulunbuyGove AirportMain terminal entrance (2002)IATA: GOVICAO: YPGVSummaryAirport typePublicOwnerNhulunbuy CorporationOperatorNhulunbuy CorporationServesGove Peninsula, Northern Territory, AustraliaLocationNhulunbuyElevation AMSL205 ft / 62 mCoordinates12°16′12″S 136°49′06″E / 12.27000°S 136.81833°E / -12.27000; 136.81833MapYPGVLocation in the Northern TerritoryRunways Direction Length Surface m ft 13/31 2,208 7,244 Asphalt Stat...

 

 

British Rail discount card Network Card redirects here. For the computer networking component, see Network interface controller. Network RailcardProduct typePublic transportCountryUnited KingdomIntroduced1986Related brandsNational Rail EnquiriesBritish RailMarketsUnited KingdomWebsitewww.network-railcard.co.uk The earliest version of the Network Card, issued manually rather than through an APTIS machine. The first APTIS version of the Network Card. This was used from the start of the APTIS er...